44 research outputs found

    FACTORS INFLUENCING THE SPATIAL AND TEMPORAL STRUCTURE OF A CARNIVORE GUILD IN THE CENTRAL HARDWOOD REGION

    Get PDF
    Ecological communities are most commonly structured by a mixture of bottom-up processes such as habitat or prey, competition within the same trophic level, and top-down forces from higher trophic levels. Carnivore guilds play a vital role in the broader ecological community by stabilizing or destabilizing food webs. Consequently, factors influencing the structure of carnivore guilds can be critical to patterns in ecosystems. Coyotes (Canis latrans), bobcats (Lynx rufus), gray foxes (Urocyon cinereoargenteus), raccoons (Procyon lotor), red foxes (Vulpes vulpes), and striped skunks (Mephitis mephitis) occur sympatrically throughout much of their geographic ranges in North America and overlap in resource use, indicating potential for interspecific interactions. Although much is known about space use, habitat relationships, and activity patterns of the individual species separately, little is known about factors that facilitate coexistence and how interactions within this guild influence distribution, activity, and survival of the smaller carnivores. For example, gray fox populations appear to have declined in Illinois since the early 1990s and it is unknown if the increase in bobcat and coyote populations during the same time period is the cause. I conducted a large-scale non-invasive carnivore survey using an occupancy modeling framework to quantify factors affecting the structure of this widely-occurring carnivore guild. I used baited remote cameras during 3-week surveys to detect carnivores at 1,118 camera-points in 357 2.6-km2 sections (clusters of 3-4 cameras/section) in the 16 southernmost counties of Illinois (16,058 km2) during January-April, 2008-2010. I collected microhabitat data at each camera-point and landscape-level habitat data for each camera-cluster. In a multi-stage approach, I used information-theoretic methods to develop and evaluate models for detection, species-specific habitat occupancy, multi-species co-occupancy, and multi-season (colonization and extinction) occupancy dynamics. I developed hypotheses for each species regarding the occupancy of areas based on anthropogenic features, prey availability, landscape complexity, and vegetative landcover. I used photographic data, Poisson regression, and mixed-model logistic regression to quantify temporal activity of carnivores in the study area and how interspecific factors influence temporal patterns of activity. Of the 102,711 photographs of endothermic animals I recorded photographs of bobcats (n = 412 photographs), coyotes (n = 1,397), gray foxes (n = 546), raccoons (n = 40,029), red foxes (n = 149) and striped skunks (n = 2,467). Bobcats were active primarily during crepuscular periods, and their activity was reduced with precipitation and higher temperatures. The probability of detecting bobcats at a camera point decreased after a bobcat photograph was recorded, suggesting avoidance of remote cameras. Across southern Illinois, bobcat occupancy at the camera-point and camera-cluster scale (point = 0.24 ± 0.04, cluster = 0.75 ± 0.06) was negatively influenced by anthropogenic features and infrastructure. Bobcats had high rates of colonization (0.86) and low rates of extinction (0.07) during the study, suggesting an expanding population, but agricultural land was less likely to be colonized. The number of coyote photographs decreased with increased temperature, but increased with previous coyote photographs, suggesting an attraction to bait in cold weather. Nearly all camera clusters were occupied by coyotes (cluster = 0.95 ± 0.03) during the entire study. At the camera-point scale, coyote occupancy (overall point = 0.58 ± 0.03) was higher in hardwood forest stands with open understories than in other habitats. Similar to coyotes, gray foxes were more likely to be photographed in cold weather and after a previous detection had occurred. However, gray fox occupancy was much lower (point = 0.13 ± 0.01, cluster = 0.29 ± 0.03) at all scales. At the camera-cluster scale, with a buffer-area size that represented 20% of the estimated home-range size of gray foxes, the species selected spatially-complex areas with high proportions of forest, and low proportions of grassland and agriculture land cover. Gray fox occupancy of camera clusters was positively related to anthropogenic features within 100% estimated home-range buffers. Collectively, the results suggest gray fox occupancy was greatest near, but not in, anthropogenic developments. Red foxes occupied a similar proportion of the study area as gray foxes (point = 0.12 ± 0.02, cluster = 0.26 ± 0.04), but were more closely associated with anthropogenic features. Indeed, at all three scales of red fox occupancy analysis, anthropogenic feature models received more support than other hypotheses. Camera-cluster extinction probabilities were higher for both gray foxes (0.57) and red foxes (0.35) than their colonization rates (gray fox = 0.16, red fox = 0.06), suggesting both species may be declining in southern Illinois. I recorded more striped skunk photographs in January and February (i.e., during the breeding period) than in March and April. Striped skunks occupied a large portion of the study area (point = 0.47 ± 0.01, cluster = 0.79 ± 0.03) and were associated primarily with anthropogenic features, especially if the features were surrounded by agricultural land and not forest. Raccoons were essentially ubiquitous within the study area, being photographed in 99% of camera clusters. In some instances, the presence of other carnivores appeared to be an important factor in the occupancy of the 4 smaller species, but in general, habitat models were more supported than co-occurrence models. Habitat had a stronger influence on the occupancy of gray foxes and red foxes than did the presence of bobcats. However, the level of red fox activity, represented by the number of photographs recorded in a camera cluster, was negatively correlated with bobcat activity. Gray fox occupancy and level of activity were reduced in camera-clusters occupied by coyotes, but were not related to bobcat occupancy. When not considering the presence of coyotes, gray foxes appeared to use camera points with fewer hardwood and more conifer trees, which was counter to previous findings. However, when adding the effect of coyote presence, gray fox point models indicated a positive relationship with hardwood stands. Therefore, gray foxes were more likely to occupy camera points in hardwood stands than conifer stands if coyotes were also present; suggesting that hardwood stands may enhance gray fox-coyote coexistence. The 2 fox species appeared to co-occur with each other at the camera-point scale more frequently than expected on the basis of their individual selection of habitat. Similarly, camera-point occupancy of red foxes was higher when coyotes were present. These apparent canid associations may be a response to locally-high prey abundance or an unmeasured habitat variable. Activity levels of raccoons, bobcats, and coyotes were all positively correlated. Collectively, my results suggest that although gray foxes and red foxes currently coexist with bobcats and coyotes, the foxes have reduced activity in the areas occupied by larger carnivores, especially when bobcats and coyotes are highly active. Further, hardwood stands may contain trees with structure that enhances tree-climbing by gray foxes, a behavior that probably facilitates coexistence with coyotes. Therefore, efforts to manage gray foxes should focus on maintaining and increasing the amount of mature oak-hickory forest, which presumably provides a suitable prey base and refugia from intraguild predation. Additionally, the varying results from different scales of analyses underscore the importance of considering multiple spatial scales in carnivore community studies

    Spatial and Temporal Structure of a Mesocarnivore Guild in Midwestern North America

    Get PDF
    Carnivore guilds play a vital role in ecological communities by cascading trophic effects, energy and nutrient transfer, and stabilizing or destabilizing food webs. Consequently, the structure of carnivore guilds can be critical to ecosystem patterns. Body size is a crucial influence on intraguild interactions, because it affects access to prey resources, effectiveness in scramble competition, and vulnerability to intraguild predation. Coyotes (Canis latrans), bobcats (Lynx rufus), gray foxes (Urocyon cinereoargenteus), raccoons (Procyon lotor), red foxes (Vulpes vulpes), and striped skunks (Mephitis mephitis) occur sympatrically throughout much of North America and overlap in resource use, indicating potential for interspecific interactions. Although much is known about the autecology of the individual species separately, little is known about factors that facilitate coexistence and how interactions within this guild influence distribution, habitat use, and temporal activity of the smaller carnivores. To assess how habitat autecology and interspecific interactions affect the structure of this widespread carnivore guild, we conducted a large-scale, non-invasive carnivore survey using an occupancy modeling framework. We deployed remote cameras during 3-week surveys to detect carnivores at 1,118 camera locations in 357 2.6-km2 sections (3–4 cameras/section composing a cluster) in the 16 southernmost counties of Illinois (16,058 km2) during January–April, 2008–2010. We characterized microhabitat at each camera location and landscape-level habitat features for each camera-cluster. In a multi-stage approach, we used information-theoretic methods to evaluate competing models for detection, species-specific habitat occupancy, multi-species co-occupancy, and multi-season (colonization and extinction) occupancy dynamics. We developed occupancy models for each species to represent hypothesized effects of anthropogenic features, prey availability, landscape complexity, and vegetative land cover. We quantified temporal activity patterns of each carnivore species based on their frequency of appearance in photographs. Further, we assessed whether smaller carnivores shifted their diel activity patterns in response to the presence of potential competitors. Of the 102,711 photographs of endothermic animals, we recorded photographs of bobcats (n = 412 photographs), coyotes (n = 1,397), gray foxes (n = 546), raccoons (n = 40,029), red foxes (n = 149), and striped skunks (n = 2,467). Bobcats were active primarily during crepuscular periods, and their activity was reduced with precipitation and higher temperatures. The probability of detecting bobcats decreased after a bobcat photograph was recorded, suggesting avoidance of remote cameras after the first encounter. Across southern Illinois, bobcat occupancy at the camera-location and camera-cluster scale (local = 0.24 ± 0.04, camera-cluster cluster = 0.75 ± 0.06) was negatively influenced by anthropogenic features and infrastructure. Bobcats had high rates of colonization (= 0.86) and low rates of extinction (= 0.07), suggesting an expanding population, but agricultural land was less likely to be colonized. Nearly all camera clusters were occupied by coyotes (cluster = 0.95 ± 0.03). At the local scale, coyote occupancy (local = 0.58 ± 0.03) was higher in hardwood forest stands with open understories than in other areas. Compared to coyotes, gray foxes occupied a smaller portion of the study area (local = 0.13 ± 0.01, cluster = 0.29 ± 0.03) at all scales. At the scale of the camera-cluster, gray fox occupancy was highest in fragmented areas with high proportions of forest, and positively related to anthropogenic features within 100% home-range buffers. Red foxes occupied a similar proportion of the study area as gray foxes (local = 0.12 ± 0.02, cluster = 0.26 ± 0.04) but were more closely associated with anthropogenic features. Only anthropogenic feature models made up the 90% confidence set at all scales of analysis for red foxes. Extinction probabilities at the scale of the camera-cluster were higher for both gray foxes (= 0.57) and red foxes (= 0.35) than their colonization rates (gray fox = 0.16, red fox = 0.06), suggesting both species may be declining in southern Illinois. Striped skunks occupied a large portion of the study area (local = 0.47 ± 0.01, cluster = 0.79 ± 0.03) and were associated primarily with anthropogenic features. Raccoons were essentially ubiquitous within the study area, being photographed in 99% of camera clusters. We observed little evidence for spatial partitioning based on interspecific interactions, with the exception of the gray fox-coyote pairs, and found that habitat preferences were more important in structuring the carnivore community. Habitat had a stronger influence on the occupancy of foxes than did the presence of bobcats. However, the level of red fox activity was negatively correlated with bobcat activity at a camera cluster. Gray fox occupancy and the number of detections within occupied sites were reduced in camera-clusters occupied by coyotes but not bobcat occupancy. Overall, gray fox occupancy was highest at camera locations with fewer hardwood and more conifer trees. However, gray foxes were more likely to occupy camera locations in hardwood stands than conifer stands if coyotes were also present indicating that hardwood stands may enhance gray fox-coyote coexistence. The 2 fox species appeared to co-occur with each other at the local scale more frequently than expected based on their individual selection of habitat. Similarly, occupancy of camera-location by red foxes was higher when coyotes were present. These positive spatial associations among canids may be a response to locally high prey abundance or unmeasured habitat variables. Activity levels of raccoons, bobcats, and coyotes were all positively correlated. Overall, our co-occurrence and activity models indicate competitor-driven adjustments in space use among members of a carnivore community might be the exception rather than the norm. Nevertheless, although our results indicate that gray foxes and red foxes currently coexist with bobcats and coyotes, their distribution appears to be contracting on our study area. Coexistence of foxes with larger carnivores may be enhanced by temporal partitioning of activity and by habitat features that reduce vulnerability of intraguild predation. For instance, hardwood stands may contain trees with structure that enhances tree-climbing by gray foxes, a behavior that probably facilitates coexistence with coyotes. Efforts to enhance gray fox populations in this region would likely benefit from increasing the amount of mature oak-hickory forest. Additionally, the varying results from different scales of analyses underscore the importance of considering multiple spatial scales in carnivore community studies

    The rapid rise of next-generation natural history

    Get PDF
    Many ecologists have lamented the demise of natural history and have attributed this decline to a misguided view that natural history is outdated and unscientific. Although there is a perception that the focus in ecology and conservation have shifted away from descriptive natural history research and training toward hypothetico-deductive research, we argue that natural history has entered a new phase that we call “next-generation natural history.” This renaissance of natural history is characterized by technological and statistical advances that aid in collecting detailed observations systematically over broad spatial and temporal extents. The technological advances that have increased exponentially in the last decade include electronic sensors such as camera-traps and acoustic recorders, aircraft- and satellite-based remote sensing, animal-borne biologgers, genetics and genomics methods, and community science programs. Advances in statistics and computation have aided in analyzing a growing quantity of observations to reveal patterns in nature. These robust next-generation natural history datasets have transformed the anecdotal perception of natural history observations into systematically collected observations that collectively constitute the foundation for hypothetico-deductive research and can be leveraged and applied to conservation and management. These advances are encouraging scientists to conduct and embrace detailed descriptions of nature that remain a critically important component of the scientific endeavor. Finally, these next-generation natural history observations are engaging scientists and non-scientists alike with new documentations of the wonders of nature. Thus, we celebrate next-generation natural history for encouraging people to experience nature directly

    Variation in inbreeding rates across the range of Northern Spotted Owls (\u3ci\u3eStrix occidentalis caurina\u3c/i\u3e): Insights from over 30 years of monitoring data

    Get PDF
    Inbreeding has been difficult to quantify in wild populations because of incomplete parentage information. We applied and extended a recently developed framework for addressing this problem to infer inbreeding rates in Northern Spotted Owls (Strix occidentalis caurina) across the Pacific Northwest, USA. Using pedigrees from 14,187 Northern Spotted Owls, we inferred inbreeding rates for 14 types of matings among relatives that produce pedigree inbreeding coefficients of F=0.25 or F=0.125. Inbreeding was most common in the Washington Cascades, where an estimated 15% of individuals are inbred. Inbreeding was lowest in western Oregon (3.5%) and northern California (2.7%), and intermediate for the Olympic Peninsula of Washington (6.1%). Estimates from the Olympic Peninsula were likely underestimates because of small sample sizes and the presence of few pedigrees capable of resolving inbreeding events. Most inbreeding resulted from matings between full siblings or half siblings, although a high rate of inbreeding from mother–son pairs was identified in the Olympic Peninsula. Geographic variation in inbreeding rates may reflect population declines and bottlenecks that have been detected in prior investigations. We show that there is strong selection against inbred birds. Only 3 of 44 inbred birds were later identified as parents (6.8%), whereas 2,823 of 10,380 birds that represented a comparable cross section of the data were later seen as reproducing parents (27.2%). Habitat loss and competition with Barred Owls (S. varia) remain primary threats to Northern Spotted Owls. However, given the negative consequences of inbreeding, Spotted Owl populations in Washington with suitable habitat and manageable numbers of Barred Owls may benefit from translocations of individuals from Oregon and California to introduce new genetic variation and reduce future inbreeding events. La endogamia ha sido dif´ıcil de cuantificar en las poblaciones silvestres debido a la falta de informaci ´on sobre los parentescos. Aplicamos y extendimos un marco conceptual recientemente desarrollado para encarar el problema de inferir las tasas de endogamia en Strix occidentalis caurina a trav´es del noroeste del Pac´ıfico, EEUU. Usando los pedigr´ıes provenientes de 14187 individuos, inferimos las tasas de endogamia para 14 tipos de apareamiento entre parientes que producen coeficientes de endogamia de pedigr´ı de F=0.25 o F=0.125. La endogamia fue ma´s com´un en las Cascadas de Washington, donde se estima que 15% de los individuos son endoga´micos. La endogamia fue menor en el oeste de Oreg´on (3.5%) y el norte de California (2.7%), e intermedia en la Pen´ınsula Ol´ımpica de Washington (6.1%). Las estimaciones de la Pen´ınsula Ol´ımpica fueron probablemente subestimadas debido a los peque ˜nos tama ˜nos de muestreo y a la presencia de pocos pedigr´ıes capaces de resolver los eventos de endogamia. La mayor´ıa de la endogamia result ´o de los apareamientos entre hermanos completos o medios hermanos, aunque se identific ´o una alta tasa de endogamia en parejas madre/hijo en la Pen´ınsula Ol´ımpica. La variaci ´on geogra´ fica en las tasas de endogamia puede reflejar disminuciones poblacionales y cuellos de botella que han sido detectados en investigaciones previas. Mostramos que hay una fuerte selecci ´on contra las aves endoga´micas. Solo tres de 44 aves endoga´micas fueron ma´s tarde identificadas como progenitores (6.8%), mientras que 2823 de 10380 aves que representaron una secci ´on transversal comparable de datos fueron vistas ma´s tarde como progenitores reproductivos (27.2%). La p´erdida de ha´bitat y la competencia con Strix varia sigue siendo la principal amenaza para S. o. caurina. Sin embargo, dadas las consecuencias negativas de la endogamia, las poblaciones de S. occidentalis en Washington con ha´bitat adecuado y n´umeros manejables de Strix varia pueden beneficiarse de traslocaciones de individuos de Oreg´on y California para introducir nueva variaci ´on gen´etica y reducir futuros eventos de endogamia

    Range-Wide Declines of Northern Spotted Owl Populations in the Pacific Northwest: A Meta-Analysis

    Get PDF
    The northern spotted owl (Strix occidentalis caurina) inhabits older coniferous forests in the Pacific Northwest and has been at the center of forest management issues in this region. The immediate threats to this federally listed species include habitat loss and competition with barred owls (Strix varia), which invaded from eastern North America. We conducted a prospective meta-analysis to assess population trends and factors affecting those trends in northern spotted owls using 26 years of survey and capture-recapture data from 11 study areas across the owls\u27 geographic range to analyze demographic traits, rates of population change, and occupancy parameters for spotted owl territories. We found that northern spotted owl populations experienced significant declines of 6–9% annually on 6 study areas and 2–5% annually on 5 other study areas. Annual declines translated to ≤35% of the populations remaining on 7 study areas since 1995. Barred owl presence on spotted owl territories was the primary factor negatively affecting apparent survival, recruitment, and ultimately, rates of population change. Analysis of spotted and barred owl detections in an occupancy framework corroborated the capture-recapture analyses with barred owl presence increasing territorial extinction and decreasing territorial colonization of spotted owls. While landscape habitat components reduced the effect of barred owls on these rates of decline, they did not reverse the negative trend. Our analyses indicated that northern spotted owl populations potentially face extirpation if the negative effects of barred owls are not ameliorated while maintaining northern spotted owl habitat across their range

    Invader removal triggers competitive release in a threatened avian predator

    Get PDF
    Changes in the distribution and abundance of invasive species can have far-reaching ecological consequences. Programs to control invaders are common but gauging the effectiveness of such programs using carefully controlled, large-scale field experiments is rare, especially at higher trophic levels. Experimental manipulations coupled with long-term demographic monitoring can reveal the mechanistic underpinnings of interspecific competition among apex predators and suggest mitigation options for invasive species. We used a large-scale before-after control-impact removal experiment to investigate the effects of an invasive competitor, the barred owl (Strix varia), on the population dynamics of an iconic old-forest native species, the northern spotted owl (Strix occidentalis caurina). Removal of barred owls had a strong, positive effect on survival of sympatric spotted owls and a weaker but positive effect on spotted owl dispersal and recruitment. After removals, the estimated mean annual rate of population change for spotted owls stabilized in areas with removals (0.2% decline per year), but continued to decline sharply in areas without removals (12.1% decline per year). The results demonstrated that the most substantial changes in population dynamics of northern spotted owls over the past two decades were associated with the invasion, population expansion, and subsequent removal of barred owls. Our study provides experimental evidence of the demographic consequences of competitive release, where a threatened avian predator was freed from restrictions imposed on its population dynamics with the removal of a competitively dominant invasive species

    Range-wide sources of variation in reproductive rates of northern spotted owls

    Get PDF
    We conducted a range-wide investigation of the dynamics of site-level reproductive rate of northern spotted owls using survey data from 11 study areas across the subspecies geographic range collected during 1993–2018. Our analytical approach accounted for imperfect detection of owl pairs and misclassification of successful reproduction (i.e., at least one young fledged) and contributed further insights into northern spotted owl population ecology and dynamics. Both nondetection and state misclassification were important, especially because factors affecting these sources of error also affected focal ecological parameters. Annual probabilities of site occupancy were greatest at sites with successful reproduction in the previous year and lowest for sites not occupied by a pair in the previous year. Site-specific occupancy transition probabilities declined over time and were negatively affected by barred owl presence. Overall, the site-specific probability of successful reproduction showed substantial year-to-year fluctuations and was similar for occupied sites that did or did not experience successful reproduction the previous year. Site-specific probabilities for successful reproduction were very small for sites that were unoccupied the previous year. Barred owl presence negatively affected the probability of successful reproduction by northern spotted owls in Washington and California, as predicted, but the effect in Oregon was mixed. The proportions of sites occupied by northern spotted owl pairs showed steep, near-monotonic declines over the study period, with all study areas showing the lowest observed levels of occupancy to date. If trends continue it is likely that northern spotted owls will become extirpated throughout large portions of their range in the coming decades

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe
    corecore