23 research outputs found

    Selective gelation of N-(4-pyridyl)nicotinamide by copper(II) salts

    Get PDF
    We report the selective gelation properties of the copper(II) complexes of N-(4-pyridyl)nicotinamide (4PNA). The morphology of the xerogels was examined by scanning electron microscopy (SEM). The correlation between the X-ray powder diffraction (XRPD) pattern of the xerogels and the single crystal structure of the copper(II) acetate complex suggests that the single crystal X-ray data represent a good structural model for the gel fibers, and that gelation arises from the presence of a 1D hydrogen-bonded chain between gelator amide groups and coordinated anions, while the presence of strongly bound water in non-gelator systems results in the formation of more extensively hydrogen-bonded crystalline networks. The selective gelation of all the copper(II) salts compared to the other metal salts may be attributed to the Jahn–Teller distorted nature of copper(II), which weakens water binding in all copper(II) salts

    Stimuli-Responsive Properties of Supramolecular Gels Based on Pyridyl-N-oxide Amides

    Get PDF
    Publisher Copyright: © 2023 by the authors.The nature of functional groups and their relative position and orientation play an important role in tuning the gelation properties of stimuli-responsive supramolecular gels. In this work, we synthesized and characterized mono-/bis-pyridyl-N-oxide compounds of N-(4-pyridyl)nicotinamide (L 1–L 3). The gelation properties of these N-oxide compounds were compared with the reported isomeric counterpart mono-/bis-pyridyl-N-oxide compounds of N-(4-pyridyl)isonicotinamide. Hydrogels obtained with L 1 and L 3 were thermally and mechanically more stable than the corresponding isomeric counterparts. The surface morphology of the xerogels of di-N-oxides (L 3 and diNO) obtained from the water was studied using scanning electron microscopy (SEM), which revealed that the relative position of N-oxide moieties did not have a prominent effect on the gel morphology. The solid-state structural analysis was performed using single-crystal X-ray diffraction to understand the key mechanism in gel formation. The versatile nature of N-oxide moieties makes these gels highly responsive toward an external stimulus, and the stimuli-responsive behavior of the gels in water and aqueous mixtures was studied in the presence of various salts. We studied the effect of various salts on the gelation behavior of the hydrogels, and the results indicated that the salts could induce gelation in L 1 and L 3 below the minimum gelator concentration of the gelators. The mechanical properties were evaluated by rheological experiments, indicating that the modified compounds displayed enhanced gel strength in most cases. Interestingly, cadmium chloride formed supergelator at a very low concentration (0.7 wt% of L 3), and robust hydrogels were obtained at higher concentrations of L 3. These results show that the relative position of N-oxide moieties is crucial for the effective interaction of the gelator with salts/ions resulting in LMWGs with tunable properties.Peer reviewe

    Pharmaceutical Polymorph Control in a Drug-Mimetic Supramolecular Gel

    Get PDF
    We report the synthesis of a bis(urea) gelator designed to specifically mimic the chemical structure of the highly polymorphic drug substance ROY. Crystallization of ROY from toluene gels of this gelator results in the formation of the metastable red form instead of the thermodynamic yellow polymorph. In contrast, all other gels and solution control experimetns give the yellow form. Conformational and crystal structure prediction methods have been used to propose the structure of the gel and shows that the templation of the red form by the targetted gel results from conformational matching of the gelator to the ROY substrate coupled with overgorwth of ROY onto the the local periodic structure of the gel fibres

    Making and Breaking of Gels: Stimuli-Responsive Properties of Bis(Pyridyl-N-oxide Urea) Gelators

    No full text
    The structural modification of existing supramolecular architecture is an efficient strategy to design and synthesize supramolecular gels with tunable and predictable properties. In this work, we have modified bis(pyridyl urea) compounds with different linkers, namely hexylene and butylene, to their corresponding bis(pyridyl-N-oxide urea). The gelation properties of both the parent and the modified compounds were studied, and the results indicated that modification of the 3-pyridyl moieties to the corresponding 3-pyridyl-N-oxides induced hydrogelation. The stability of the parent and modified compounds were evaluated by sol-gel transition temperature (Tgel) and rheological measurements, and single-crystal X-ray diffraction was used to analyze the solid-state interactions of the gelators. The morphologies of the dried gels were analyzed by scanning electron microscopy (SEM), which revealed that the structural modification did not induce any prominent effect on the gel morphology. The stimuli-responsive behavior of these gels in the presence of salts in DMSO/water was evaluated by rheological experiments, which indicated that the modified compounds displayed enhanced gel strength in most cases. However, the gel network collapsed in the presence of the chloride salts of aluminum(III), zinc(II), copper(II), and cadmium(II). The mechanical strength of the parent gels decreased in the presence of salts, indicating that the structural modification resulted in robust gels in most cases. The modified compounds formed gels below minimum gel concentration in the presence of various salts, indicating salt-induced gelation. These results show the making and breaking ability of the gel network in the presence of external stimuli (salts), which explains the potential of using LMWGs based on N-oxide moieties as stimuli-responsive materials

    Tuning Gel State Properties of Supramolecular Gels by Functional Group Modification

    Get PDF
    The factors affecting the self-assembly process in low molecular weight gelators (LMWGs) were investigated by tuning the gelation properties of a well-known gelator N-(4-pyridyl)isonicotinamide (4PINA). The N―H∙∙∙N interactions responsible for gel formation in 4PINA were disrupted by altering the functional groups of 4PINA, which was achieved by modifying pyridyl moieties of the gelator to pyridyl N-oxides. We synthesized two mono-N-oxides (INO and PNO) and a di-N-oxide (diNO) and the gelation studies revealed selective gelation of diNO in water, but the two mono-N-oxides formed crystals. The mechanical strength and thermal stabilities of the gelators were evaluated by rheology and transition temperature (Tgel) experiments, respectively, and the analysis of the gel strength indicated that diNO formed weak gels compared to 4PINA. The SEM image of diNO xerogels showed fibrous microcrystalline networks compared to the efficient fibrous morphology in 4PINA. Single-crystal X-ray analysis of diNO gelator revealed that a hydrogen-bonded dimer interacts with adjacent dimers via C―H∙∙∙O interactions. The non-gelator with similar dimers interacted via C―H∙∙∙N interaction, which indicates the importance of specific non-bonding interactions in the formation of the gel network. The solvated forms of mono-N-oxides support the fact that these compounds prefer crystalline state rather than gelation due to the increased hydrophilic interactions. The reduced gelation ability (minimum gel concentration (MGC)) and thermal strength of diNO may be attributed to the weak intermolecular C―H∙∙∙O interaction compared to the strong and unidirectional N―H∙∙∙N interactions in 4PINA

    Crystal Habit Modification of Metronidazole by Supramolecular Gels with Complementary Functionality

    Get PDF
    A series of bis(urea) compounds with complementary functional groups similar to the pharmaceutical drug metronidazole and a structural isomer isometronidazole have been synthesized. The gelation properties of these compounds were studied in various solvent/solvent mixtures. The mechanical strength of the isomeric gelators was compared using rheology, and the morphologies of the xerogels were analyzed by scanning electron microscopy. These gels were used as media for metronidazole crystallization resulting in a marked habit modification of the metronidazole crystals in the drug-mimicking gels. However, crystallization in the nonmimetic isomeric gel resulted in morphologies similar to the solution state. These results indicate that the drug-mimetic gels interact with the surface of the drug crystal giving rise to new morphologies

    Solid-State Structural Transformation and Photoluminescence Properties of Supramolecular Coordination Compounds

    No full text
    The combination of strong coordination bonds and hydrogen bonding interactions were used to generate a series of supramolecular coordination materials (SCMs), which was achieved by reacting a bis-pyridyl amide ligand, namely N-(4-pyridyl)nicotinamide (4PNA) with copper(II), zinc(II), and cadmium(II) benzoates. The SCMs were structurally characterized using X-ray diffraction and the key intermolecular interactions were identified via Hirshfeld surface analysis. The role of solvent molecules on the supramolecular architecture was analyzed by synthesizing the SCMs in different solvents/solvent mixtures. A solvent-mediated solid-state structural transformation was observed in copper(II) SCMs and we were able to isolate the intermediate form of the crystal-to-crystal transformation process. The luminescence experiments revealed that complexation enhanced the fluorescence properties of 4PNA in the zinc(II) and cadmium(II) SCMs, but a reverse phenomenon was observed in the copper(II) SCMs. This work demonstrated the tuning of supramolecular assembly in coordination compounds as a function of solvents for generating SCMs with diverse properties

    Crystal habit modification of Cu(ii) isonicotinate–N-oxide complexes using gel phase crystallisation

    Get PDF
    We report the crystallisation of three forms of the copper(II) isonicotinate–N-oxide complex and their phase interconversion via solvent-mediated crystal-to-crystal transformation. The different forms of the copper complex have been isolated and characterised by single crystal X-ray diffraction. Gel phase crystallisation performed in hydrogels, low molecular weight gels and gels of a tailored gelator showed crystal habit modification. Crystallisation in aqueous ethanol resulted in the concomitant formation of blue (form-I) and green (form-II/IV) crystals while the use of a low molecular weight gel resulted in the selective crystallization of the blue form-I under identical conditions. Comparison of the gel phase and the solution state crystallisation in various solvent compositions reveals that the blue form-I is the thermodynamically stable form under ambient conditions

    Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane: The role of dissociative ionization and dissociative electron attachment in the deposition process

    Get PDF
    We present first experiments on electron beam induced deposition of silacyclohexane (SCH) and dichlorosilacyclohexane (DCSCH) under a focused high-energy electron beam (FEBID). We compare the deposition dynamics observed when growing pillars of high aspect ratio from these compounds and we compare the proximity effect observed for these compounds. The two precursors show similar behaviour with regards to fragmentation through dissociative ionization in the gas phase under single-collision conditions. However, while DCSCH shows appreciable cross sections with regards to dissociative electron attachment, SCH is inert with respect to this process. We discuss our deposition experiments in context of the efficiency of these different electron-induced fragmentation processes. With regards to the deposition dynamics, we observe a substantially faster growth from DCSCH and a higher saturation diameter when growing pillars with high aspect ratio. However, both compounds show similar behaviour with regards to the proximity effect. With regards to the composition of the deposits, we observe that the C/Si ratio is similar for both compounds and in both cases close to the initial molecular stoichiometry. The oxygen content in the DCSCH deposits is about double that of the SCH deposits. Only marginal chlorine is observed in the deposits of from DCSCH. We discuss these observations in context of potential approaches for Si deposition.ImPhys/Imaging PhysicsImPhys/Charged Particle Optic

    Fluorous ‘Ponytails’ Lead to Strong Gelators Showing Thermally Induced Structure Evolution

    Get PDF
    Appending perfluoroalkyl substituents to bis(urea) gelators results in significantly decreased inter-chain interactions with markedly thinner fibres and hence more cross-linked and more transparent gels with potential applications in the crystallisation of fluorinated pharmaceuticals. Gel structure has been probed by detailed SANS measurements which indicate a surprising structure evolution on thermal cycling, not seen for hydrocarbon analogues. The SANS data are complemented by the single crystal X-ray structure of one fluorinated gelator
    corecore