43 research outputs found

    Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy.

    Get PDF
    Aminoacyl-tRNA synthetases (ARSs) function to transfer amino acids to cognate tRNA molecules, which are required for protein translation. To date, biallelic mutations in 31 ARS genes are known to cause recessive, early-onset severe multi-organ diseases. VARS encodes the only known valine cytoplasmic-localized aminoacyl-tRNA synthetase. Here, we report seven patients from five unrelated families with five different biallelic missense variants in VARS. Subjects present with a range of global developmental delay, epileptic encephalopathy and primary or progressive microcephaly. Longitudinal assessment demonstrates progressive cortical atrophy and white matter volume loss. Variants map to the VARS tRNA binding domain and adjacent to the anticodon domain, and disrupt highly conserved residues. Patient primary cells show intact VARS protein but reduced enzymatic activity, suggesting partial loss of function. The implication of VARS in pediatric neurodegeneration broadens the spectrum of human diseases due to mutations in tRNA synthetase genes

    Mutations in MBOAT7, Encoding Lysophosphatidylinositol Acyltransferase I, Lead to Intellectual Disability Accompanied by Epilepsy and Autistic Features

    No full text
    WOS: 000385333700011PubMed ID: 27616480The risk of epilepsy among individuals with intellectual disability (ID) is approximately ten times that of the general population. From a cohort of >5,000 families affected by neurodevelopmental disorders, we identified six consanguineous families harboring homozygous inactivating variants in MBOAT7, encoding lysophosphatidylinositol acyltransferase (LPIAT1). Subjects presented with ID frequently accompanied by epilepsy and autistic features. LPIAT1 is a membrane-bound phospholipid-remodeling enzyme that transfers arachidonic acid (AA) to lysophosphatidylinositol to produce AA-containing phosphatidylinositol. This study suggests a role for AA-containing phosphatidylinositols in the development of ID accompanied by epilepsy and autistic features.Howard Hughes Medical Institute; National Institute of Neurological Disorders and Stroke [R01NS098004, R01NS048453]; Eunice Kennedy Shriver National Institute of Child Health and Human Development [P01HD070494]; Qatar National Research Fund [NPRP6-1463]; Simons Foundation Autism Research Initiative [175303, 275275]; Deutsche Forschungsgemeinschaft (DFG) [AB393/2-2, AB393/4-1]; Canadian Institutes of Health Research [MOP-102758]; Pakistani Higher Education CommissionWe are grateful to the affected individuals and their families for their participation in the study. This study was supported by the Howard Hughes Medical Institute, National Institute of Neurological Disorders and Stroke (R01NS098004 and R01NS048453), Eunice Kennedy Shriver National Institute of Child Health and Human Development (P01HD070494), Qatar National Research Fund (NPRP6-1463), and Simons Foundation Autism Research Initiative (175303 and 275275). We thank the Broad Institute (U54HG003067 to E. Lander and HG00 8900 to D. MacArthur) and the Yale Center for Mendelian Disorders (U54HG006504 to R. Lifton, M. Gunel, M. Gerstein, and S. Mane) for sequencing support and analysis. This study was partially supported by grants from the Deutsche Forschungsgemeinschaft (DFG) to R.A.J. (AB393/2-2 and AB393/4-1), a grant from the Canadian Institutes of Health Research to J.B.V. (MOP-102758), and an award from the Pakistani Higher Education Commission to I.A

    UPF1 regulates mRNA stability by sensing poorly translated coding sequences

    No full text
    Summary: Post-transcriptional mRNA regulation shapes gene expression, yet how cis-elements and mRNA translation interface to regulate mRNA stability is poorly understood. We find that the strength of translation initiation, upstream open reading frame (uORF) content, codon optimality, AU-rich elements, microRNA binding sites, and open reading frame (ORF) length function combinatorially to regulate mRNA stability. Machine-learning analysis identifies ORF length as the most important conserved feature regulating mRNA decay. We find that Upf1 binds poorly translated and untranslated ORFs, which are associated with a higher decay rate, including mRNAs with uORFs and those with exposed ORFs after stop codons. Our study emphasizes Upf1’s converging role in surveilling mRNAs with exposed ORFs that are poorly translated, such as mRNAs with long ORFs, ORF-like 3′ UTRs, and mRNAs containing uORFs. We propose that Upf1 regulation of poorly/untranslated ORFs provides a unifying mechanism of surveillance in regulating mRNA stability and homeostasis in an exon-junction complex (EJC)-independent nonsense-mediated decay (NMD) pathway that we term ORF-mediated decay (OMD)

    A homozygous founder mutation in TRAPPC6B associates with a neurodevelopmental disorder characterised by microcephaly epilepsy and autistic features

    No full text
    Background: Transport protein particle (TRAPP) is a multisubunit complex that regulates membrane trafficking through the Golgi apparatus. The clinical phenotype associated with mutations in various TRAPP subunits has allowed elucidation of their functions in specific tissues. The role of some subunits in human disease, however, has not been fully established, and their functions remain uncertain. Objective: We aimed to expand the range of neurodevelopmental disorders associated with mutations in TRAPP subunits by exome sequencing of consanguineous families. Methods: Linkage and homozygosity mapping and candidate gene analysis were used to identify homozygous mutations in families. Patient fibroblasts were used to study splicing defect and zebrafish to model the disease. Results: We identified six individuals from three unrelated families with a founder homozygous splice mutation in TRAPPC6B, encoding a core subunit of the complex TRAPP I. Patients manifested a neurodevelopmental disorder characterised by microcephaly, epilepsy and autistic features, and showed splicing defect. Zebrafish trappc6b morphants replicated the human phenotype, displaying decreased head size and neuronal hyperexcitability, leading to a lower seizure threshold. Conclusion: This study provides clinical and functional evidence of the role of TRAPPC6B in brain development and function

    Brd4 and P300 Confer Transcriptional Competency during Zygotic Genome Activation

    No full text
    The awakening of the genome after fertilization is a cornerstone of animal development. However, the mechanisms that activate the silent genome after fertilization are poorly understood. Here, we show that transcriptional competency is regulated by Brd4- and P300-dependent histone acetylation in zebrafish. Live imaging of transcription revealed that genome activation, beginning at the miR-430 locus, is gradual and stochastic. We show that genome activation does not require slowdown of the cell cycle and is regulated through the translation of maternally inherited mRNAs. Among these, the enhancer regulators P300 and Brd4 can prematurely activate transcription and restore transcriptional competency when maternal mRNA translation is blocked, whereas inhibition of histone acetylation blocks genome activation. We conclude that P300 and Brd4 are sufficient to trigger genome-wide transcriptional competency by regulating histone acetylation on the first zygotic genes in zebrafish. This mechanism is critical for initiating zygotic development and developmental reprogramming.This research was supported by the Fonds de Recherche du Québec Santé (postdoctoral fellowship to J.-D.B.), the Surdna Foundation and the Yale Genetics Venture Fund (postdoctoral fellowship to L.M.), and the NIH (grants R01 HD074078, GM103789, GM102251, GM101108, GM081602, R35 GM122580, and 4DNucleome program to A.J.G.). M.A.M.-M. was supported by Programa de Movilidad en Areas de Investigación priorizadas por la Consejería de Igualdad, Salud y Políticas Sociales de la Junta de Andalucía and is currently supported by Ramon y Cajal program from Ministerio de Ciencia, Innovación y Universidades of the Spanish government (RYC-2017-23041). The Giraldez lab is supported by the Howard Hughes Medical Institute Faculty Scholar program and was supported by the Pew Scholars Program in the Biomedical Sciences, March of Dimes 1-FY12-230, the Yale Scholars Program, and Whitman fellowship funds provided by E.E. Just, Lucy B. Lemann, Evelyn and Melvin Spiegel, The Haldan Keffer Hartline and Edward F. MacNichol, Jr., of the Marine Biological Laboratory in Woods Hole, Massachusetts to A.J.G

    Uner Tan syndrome caused by a homozygous TUBB2B mutation affecting microtubule stability

    No full text
    The integrity and dynamic properties of the microtubule cytoskeleton are indispensable for the development of the mammalian brain. Consequently, mutations in the genes that encode the structural component (the α/β-tubulin heterodimer) can give rise to severe, sporadic neurodevelopmental disorders. These are commonly referred to as the tubulinopathies. Here we report the addition of recessive quadrupedalism, also known as Uner Tan syndrome (UTS), to the growing list of diseases caused by tubulin variants. Analysis of a consanguineous UTS family identified a biallelic TUBB2B mutation, resulting in a p.R390Q amino acid substitution. In addition to the identifying quadrupedal locomotion, all three patients showed severe cerebellar hypoplasia. None, however, displayed the basal ganglia malformations typically associated with TUBB2B mutations. Functional analysis of the R390Q substitution revealed that it did not affect the ability of β-tubulin to fold or become assembled into the α/β-heterodimer, nor did it influence the incorporation of mutant-containing heterodimers into microtubule polymers. The 390Q mutation in S. cerevisiae TUB2 did not affect growth under basal conditions, but did result in increased sensitivity to microtubule-depolymerizing drugs, indicative of a mild impact of this mutation on microtubule function. The TUBB2B mutation described here represents an unusual recessive mode of inheritance for missense-mediated tubulinopathies and reinforces the sensitivity of the developing cerebellum to microtubule defects

    Autosomal-Recessive Mutations in the tRNA Splicing Endonuclease Subunit TSEN15 Cause Pontocerebellar Hypoplasia and Progressive Microcephaly

    No full text
    The tRNA splicing endonuclease is a highly evolutionarily conserved protein complex, involved in the cleavage of intron-containing tRNAs. In human it consists of the catalytic subunits TSEN2 and TSEN34, as well as the non-catalytic TSEN54 and TSEN15. Recessive mutations in the corresponding genes of the first three are known to cause pontocerebellar hypoplasia (PCH) types 2A-C, 4, and 5. Here, we report three homozygous TSEN15 variants that cause a milder version of PCH2. The affected individuals showed progressive microcephaly, delayed developmental milestones, intellectual disability, and, in two out of four cases, epilepsy. None, however, displayed the central visual failure seen in PCH case subjects where other subunits of the TSEN are mutated, and only one was affected by the extensive motor defects that are typical in other forms of PCH2. The three amino acid substitutions impacted the protein level of TSEN15 and the stoichiometry of the interacting subunits in different ways, but all resulted in an almost complete loss of in vitro tRNA cleavage activity. Taken together, our results demonstrate that mutations in any known subunit of the TSEN complex can cause PCH and progressive microcephaly, emphasizing the importance of its function during brain development

    Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome

    No full text
    Background Microcephaly with nephrotic syndrome is a rare co-occurrence, constituting the Galloway-Mowat syndrome (GAMOS), caused by mutations in WDR73 (OMIM: 616144). However, not all patients harbour demonstrable WDR73 deleterious variants, suggesting that there are other yet unidentified factors contributing to GAMOS aetiology

    Mutations in MBOAT7, Encoding Lysophosphatidylinositol Acyltransferase I, Lead to Intellectual Disability Accompanied by Epilepsy and Autistic Features

    No full text
    The risk of epilepsy among individuals with intellectual disability (ID) is approximately ten times that of the general population. From a cohort of >5,000 families affected by neurodevelopmental disorders, we identified six consanguineous families harboring homozygous inactivating variants in MBOAT7, encoding lysophosphatidylinositol acyltransferase (LPIAT1). Subjects presented with ID frequently accompanied by epilepsy and autistic features. LPIAT1 is a membrane-bound phospholipid-remodeling enzyme that transfers arachidonic acid (AA) to lysophosphatidylinositol to produce AA-containing phosphatidylinositol. This study suggests a role for AA-containing phosphatidylinositols in the development of ID accompanied by epilepsy and autistic features
    corecore