198 research outputs found

    Group Differences Among Nongmingong: A Follow-up Ethnographic Case Study

    Get PDF
    This study probes the differences between two generations of nongmingong by presenting and analyzing the ethnographic fieldwork data collected in a labor-intensive enterprise. In the article the authors tend to stress two points. The first is about the attitude to the choice of “reflux” and “job-hopping”. It is suggested that “reflux” and “job-hopping” are two different practices and attempts for both new and old nongmingong when confronted with future development, which may be viewed an opportunity for them. It also suggests that “reflux” and “job-hopping” may represent the needs for self-actualization, strategies and means of mobility or even the different ways of worldview between rural and urban residents of the new and old nongmingong. The second point is about the process of self-categorization of the nongmingong, which illustrates how they are divided by the ideas and options. The authors will explain the process of internal alteration by analysis of their mutual evaluation and definition, interaction, and even conflic

    Underwater target detection based on improved YOLOv7

    Full text link
    Underwater target detection is a crucial aspect of ocean exploration. However, conventional underwater target detection methods face several challenges such as inaccurate feature extraction, slow detection speed and lack of robustness in complex underwater environments. To address these limitations, this study proposes an improved YOLOv7 network (YOLOv7-AC) for underwater target detection. The proposed network utilizes an ACmixBlock module to replace the 3x3 convolution block in the E-ELAN structure, and incorporates jump connections and 1x1 convolution architecture between ACmixBlock modules to improve feature extraction and network reasoning speed. Additionally, a ResNet-ACmix module is designed to avoid feature information loss and reduce computation, while a Global Attention Mechanism (GAM) is inserted in the backbone and head parts of the model to improve feature extraction. Furthermore, the K-means++ algorithm is used instead of K-means to obtain anchor boxes and enhance model accuracy. Experimental results show that the improved YOLOv7 network outperforms the original YOLOv7 model and other popular underwater target detection methods. The proposed network achieved a mean average precision (mAP) value of 89.6% and 97.4% on the URPC dataset and Brackish dataset, respectively, and demonstrated a higher frame per second (FPS) compared to the original YOLOv7 model. The source code for this study is publicly available at https://github.com/NZWANG/YOLOV7-AC. In conclusion, the improved YOLOv7 network proposed in this study represents a promising solution for underwater target detection and holds great potential for practical applications in various underwater tasks

    Preparation of supported skeletal Ni catalyst and its catalytic hydrogenation performance of C9 fraction from coking process

    Get PDF
    Currently, the inferior compressive strength of traditional Raney-Ni catalyst restricts its application in fixed-bed reactor. To approach this problem a series of supported skeletal Ni catalysts were prepared by mixing pseudo boehmite and Ni-Al alloy powder. In the process,the calcination temperature and atmosphere, mass ratio of pseudo boehmite to Ni-Al alloy powder and the sodium hydroxide solution concentration were investigated. The catalysts characterized by intelligent granule intensity tester(IGIT), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), X-ray diffraction (XRD),low temperature nitrogen adsorption, temperature programmed reduction of hydrogen (H2-TPR), and thermogravimetric-differential thermal analysis (TG-DTA).The results were shown that the calcination atmosphere had a considerable impact on the compressive strength of the catalyst. Compared with air atmosphere, the compressive strength of the catalyst increased from 12.62 N/mm to 23.96N/mm, obviously, in argon atmosphere, which was almost twice as much as the former.The inherent reason for this was that the argon obviously inhibited the transform of NiAl3 to Ni2Al3 in which the latter was the key factor to improve compressive strength. Additionally, coke-oven C9 hydrogenation was used to evaluate the performance of the catalyst and the results indicated that the conversion of indene, the key component of coke-oven C9, was as high as 90% in 1000h under the optimum reaction conditions:T=220oC, P(H2)=2.5MPa, H2/oil=200(v/v), LHSV=3.0h-1. Our data demonstrated that the supported skeletal Ni catalyst have a good industrial prospect in the fixed-bed reactor in future

    A Combined Metabolomic and Proteomic Study Revealed the Difference in Metabolite and Protein Expression Profiles in Ruminal Tissue From Goats Fed Hay or High-Grain Diets

    Get PDF
    Currently, knowledge about the impact of high-grain (HG) feeding on metabolite and protein expression profiles in ruminal tissue is limited. In this study, a combination of proteomic and metabolomic approaches was applied to evaluate metabolic and proteomic changes of the rumen epithelium in goats fed a hay diet (Hay) or HG diet. At the metabolome level, results from principal component analysis (PCA) and PLS-DA revealed clear differences in the biochemical composition of ruminal tissue of the control (Hay) and the grain-fed groups, demonstrating the evident impact of HG feeding on metabolite profile of ruminal epithelial tissues. As compared with the Hay group, HG feeding increased the levels of eight metabolites and decreased the concentrations of seven metabolites in ruminal epithelial tissues. HG feeding mainly altered starch and sucrose metabolism, purine metabolism, glyoxylate and dicarboxylate metabolism, glycerolipid metabolism, pyruvate metabolism, glycolysis or gluconeogenesis, galactose metabolism, glycine, serine and threonine metabolism, and arginine and proline metabolism in ruminal epithelium. At the proteome level, 35 differentially expressed proteins were found in the rumen epithelium between the Hay and HG groups, with 12 upregulated and 23 downregulated proteins. The downregulated proteins were related to fatty acid metabolism, carbohydrate metabolic processes and nucleoside metabolic processes, while most of upregulated proteins were involved in oxidative stress and detoxification. In general, our findings revealed that HG feeding resulted in differential proteomic and metabolomic profiles in the rumen epithelia of goats, which may contribute to better understanding how rumen epithelium adapt to HG feeding

    Convolutional Neural Networks Facilitate River Barrier Detection and Evidence Severe Habitat Fragmentation in the Mekong River Biodiversity Hotspot

    Get PDF
    Construction of river infrastructure, such as dams and weirs, is a global issue for ecosystem protection due to the fragmentation of river habitat and hydrological alteration it causes. Accurate river barrier databases, increasingly used to determine river fragmentation for ecologically sensitive management, are challenging to generate. This is especially so in large, poorly mapped basins where only large dams tend to be recorded. The Mekong is one of the world's most biodiverse river basins but, like many large rivers, impacts on habitat fragmentation from river infrastructure are poorly documented. To demonstrate a solution to this, and enable more sensitive basin management, we generated a whole‐basin barrier database for the Mekong, by training Convolutional Neural Network (CNN)–based object detection models, the best of which was used to identify 10,561 previously unrecorded barriers. Combining manual revision and merged with the existing barrier database, our new barrier database for the Mekong Basin contains 13,054 barriers. Existing databases for the Lower Mekong documented under ∼3% of the barriers recorded by CNN combined with manual checking. The Nam Chi/Nam Mun region, eastern Thailand, is the most fragmented area within the basin, with a median [95% CI] barrier density of 15.53 [0.00–49.30] per 100 km, and Catchment Area‐based Fragmentation Index value, calculated in an upstream direction, of 1,178.67 [0.00–6,418.46], due to the construction of dams and sluice gates. The CNN‐based object detection framework is effective and potentially can transform our ability to identify river barriers across many large river basins and facilitate ecologically‐sensitive management

    An anchoring array assembly method for enhancing the electrical conductivity of composites of polypropylene and hybrid fillers

    Get PDF
    Constructing an interconnected filler-filler network in a polymer matrix is essential for enhancing the electrical conductivity of polymer composites. This work describes an Anchoring Array Assembly method for distribution of copper particles (CP) and carbon fibers (CF) in a polypropylene (PP) matrix. Constrained by a predesigned array anchoring template, the CP distribution achieved a high packing density in the PP matrix during compression molding which is key for filling the gaps between CFs, as well as for forming an interconnected hybrid filler network. Using the fixed array anchoring design, the dispersion and flow behavior of the conductive fillers and the polymer matrix are critical. When the inclination angle between the groove of the anchor mold and the horizontal plane was greater than 11.5 °, the migration of CP in the molten PP when in the anchor mold during the hot embossing process is restricted. The most conductive composites were obtained when the CPs were densely arranged in a triangular format. The conductive filler network was determined by the preset dense triangular "island-bridge" structure of the customized microarray mold. The conductivity of the composites prepared by the anchoring array assembly method reached 137.70 S/m, some 52 times higher than that prepared by traditional hot embossing methods with the same filler loading
    corecore