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High-Agreement Uncorrelated Secret Key
Generation Based on Principal Component Analysis

Preprocessing
Guyue Li, Aiqun Hu, Junqing Zhang, Linning Peng, Chen Sun, and Daming Cao

Abstract—Random and high-agreement secret key genera-
tion from noisy wideband channels is challenging due to the
autocorrelation inside the channel samples and compromised
cross correlation between channel measurements of two keying
parties. This paper studies the signal preprocessing algorithms
to establish high-agreement uncorrelated secret key in the pres-
ence of channel independent eavesdroppers. We first propose a
general mathematical model for various preprocessing schemes,
including principal component analysis (PCA), discrete cosine
transform (DCT) and wavelet transform (WT). Among prepro-
cessing schemes, PCA is proved to achieve the optimal secret
key rate. Next, PCA with common eigenvector has been found
to outperform PCA with private eigenvector in terms of an
overall consideration of key agreement, information leakage and
computational expense. Then, we propose a system level design of
key generation, including quantization, information reconciliation
and privacy amplification. Numerical results verify that the key
generation enhanced by PCA with common eigenvector can
achieve secret key with high key generation rate, low key error
rate and good randomness.

Index Terms—Wireless communications, physical layer secu-
rity, secret key generation, channel reciprocity, decorrelation,
principal component analysis.

I. INTRODUCTION

The ongoing research and development of the fifth gen-
eration (5G) wireless communications has presented a very
exciting vision by providing extremely low latency and high
data rate, which will trigger many killer applications such as
Internet of Things [1]. However, the security and privacy of
the wireless communications is always the main challenge
because the broadcast nature of wireless transmissions exposes
the confidential data exchanged to any third party within the
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communication range. This has attracted extensive research
efforts with a focus on the classic cryptography [2].

Public key cryptography (PKC) is used to distribute the
keys among users. This technology is based on the compu-
tational complexity of mathematical problems such as integer
factorization and discrete logarithms, but it may be completely
broken by the emerging quantum computers in future [3]. In
addition, PKC requires a public key infrastructure which may
not be available in many 5G applications such as device-to-
device communications. Physical layer secret key generation
has emerged as a strong candidate to complement PKC by ex-
ploiting common randomness from the wireless channels [4].
It exploits the unpredictable channel characteristics as the
key and therefore is information theoretically secure [5].
The process can be completed by a pair of users and no
help from other user is required. Finally, this technology
is implementable in the commercial wireless systems, e.g.,
evidenced by prototypes with WiFi [6].

Key generation usually contains four main steps: channel
sounding, quantization, information reconciliation and privacy
amplification [4]. Two legitimate parties, namely Alice and
Bob, successively and alternately send probe signals to each
other for obtaining channel characteristics, such as received
signal strength (RSS), channel state information (CSI), time
delay, amplitude, phase and angle-of-arrive (AoA), etc. Both
users will quantize their channel measurements into binary
sequences once they collect enough data. Because key gen-
eration usually works in time-division duplex (TDD) mode,
the channel measurements are subject to non-simultaneous
sampling and noise. Therefore, there will probably be bit
discrepancies, and information reconciliation is adopted to
enhance bit agreement by applying error correction code [7].
Finally, privacy amplification such as universal hash functions
increases randomness of the final key and wipes off the leaked
information in the above procedures [8].

The randomness can be harvested from the temporal,
frequency and spatial domains, by employing orthogonal
frequency-division multiplexing (OFDM) techniques [9–12]
or multiple antennas [13–15]. However, there may exist cor-
relation between the adjacent measurements when the two
probes are within the same coherence time and/or coherence
bandwidth, which will introduce redundancy and may finally
result in failure of key generation. Although privacy amplifi-
cation methods are used to randomize the binary sequence, the
randomness of sequences before privacy amplification is also
important. A non-random sequence will be easily cracked by
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dictionary attack.
The correlation within the collected data can be eliminated

by introducing signal preprocessing procedure after channel
sounding, such as principal component analysis (PCA) [15,
16], discrete cosine transform (DCT) [9, 17] and wavelet trans-
form (WT) [18, 19]. PCA is a statistical procedure that uses
an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components. PCA is
also named the discrete Karhunen-Loève transform (KLT)
in signal processing domain. In [15, 16], channel measure-
ments are decorrelated by transformation with their matrix
of eigenvectors. There will be information leakage during the
exchange of eigenvectors. The work in [20] proposes a channel
trend information (CTI)-based algorithm without leaking any
sensitive information. Alice and Bob first share the confidence
constant, N , which indicates the number of agreeing ones or
zeros required before a secret bit is generated. However, when
N is small, this algorithm suffers from a low average success
rate of key generation.

In [9], power spectrum is analyzed by the DCT and the
high-frequency components are trimmed, so the remaining
low-frequency components hold the power up to 90% in both
time and frequency scale. Compressed time-variant frequency
characteristics can then be obtained by inverse DCT. In the
same way, DCT is employed to transform raw RSS samples
and uncorrelated higher frequency components are discarded
in [17]. In [18], channel measurements are mapped into
WT domain and only the low frequency parts are used for
key establishment to reduce key mismatch rate. Similarly, in
[19], a compressor based on multi-level WT is applied to
preprocess measurements so that some discrepancies between
measurement sequences of different transceivers can be elimi-
nated. The above preprocessing schemes are summarized and
compared in [21]. Their results show that KLT is outperformed
by DCT and WT, which is questionable. When analyzing the
bit generation factor, the bit disagreement rate threshold in [21]
is set too high (0.35). With such high bit disagreement, the
key generation might be unsuccessful even with information
reconciliation, which can significantly affect the efficiency of
key generation. In addition, components selection and adaptive
quantization methods are not considered in [21], but KLT
features at concentrating the majority of information in a few
principal components. A fair analysis is then still required to
compare their performance. Regarding PCA, in [15, 16], Alice
and Bob use the same covariance matrix for singular value
decomposition to achieve key agreement, but the transmission
of the eigenvector will leak information to eavesdropper which
is not discussed.

The reciprocity of channel measurements is corrupted by
non-simultaneous sampling, channel noise, and hardware im-
perfection [11, 22, 23], which is tackled mainly by low pass
filtering [10] and interpolation [16]. On the other hand, PCA
can also improve the cross-correlation between the channel
measurements of Alice and Bob, because the noisy observation
is removed by only keeping principal components [15]. How-
ever, a detailed and full analysis of how PCA affects channel
cross-correlation is still missing from the existing work.

To bridge the above gaps, this paper carries out a com-
prehensive and theoretical study on the signal preprocessing
algorithms to establish high-agreement uncorrelated secret key
and uses an OFDM system as an example to evaluate the
performance. Our contributions are as follows.

• Under the assumption that eavesdropper experiences in-
dependent fading channel, a general mathematical model
of the signal preprocessing algorithms is built to find
the optimal approach. PCA is proved in theory and later
validated by Monte Carlo simulation to achieve a higher
secret key rate than DCT and WT.

• Through comprehensive discussion and comparison in
terms of key agreement, information leakage and com-
putational expense, PCA with common eigenvector is
proved to outperform PCA with private eigenvectors.

• A system level design of secret key generation is pre-
sented, including channel sounding, preprocessing, quan-
tization, information reconciliation and privacy amplifi-
cation. The system performance is evaluated in terms of
secret key rate, key agreement and randomness.

In our previous work, we have investigated the optimal pre-
processing approach in secret key generation [24]. We found
that PCA achieves the highest secret key rate, and presented
realization steps of PCA algorithm with common eigenvectors.
In this paper, we considerably extend and complement this
work by providing full discussion and proof of the optimality
of PCA and comparing the performance of PCA with common
and private eigenvectors from the perspective of key agree-
ment, information leakage and computational expense.

Notation and Outline

Unless otherwise specified, we use the following notations
throughout the manuscript: Upper (lower) bold-face letters de-
note matrices (column vectors); I denotes the identity matrix,
while 0 denotes zero matrix. Numeral subscripts of matrices
and vectors, if needed, represent their sizes. Also, matrix
superscripts (·)H , (·)T , (·)∗ denote their conjugate-transpose,
transpose, and conjugate, respectively. Superscripts (·)c and
(·)p denote the value is calculated for PCA algorithm with
common eigenvector and with private eigenvectors, respec-
tively. We use E{·} to denote ensemble expectation and
| · | to represent matrix determinant operations. We use Rx

and Rxy to denote the covariance matrix of vector x and
the cross-covariance matrix of vectors x and y, respectively.
The operation diag{x1, x2, . . . , xN} denotes a diagonal matrix
with x1, x2, . . . , xN along its main diagonal. The inequality
A � 0 denotes a positive semi-definite Hermitian matrix A,
and A � B means that the matrix A−B is a positive semi-
definite Hermitian matrix.

The rest of the paper is organized as follows. Section II
derives the general model for signal pre-processing and proves
PCA can achieve the optimal secret key rate. Section III
proposes and compares two realization of PCA schemes.
Section IV designs other key generation procedures. Section V
presents the simulation results and Section VI concludes the
paper. All proofs are deferred to the Appendix.
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II. SIGNAL PREPROCESSING MODEL AND OPTIMIZATION

We consider a general single-input single-output single-
eavesdropper (SISOSE) model. All the users are equipped with
a single antenna. Alice and Bob are two legitimate users who
plan to extract key for secure communication. Eve, a passive
eavesdropper, is located more than 10 wavelengths (1.25 m at
the carrier frequency of 2.4 GHz) away from Alice and Bob,
and there is no strong line-of-sight (LoS) between Eve and
Alice or Bob. Therefore, Eve experiences independent fading
from legitimate users. Besides, Eve knows the communica-
tion protocol and the information transmitted over the public
channels between legitimate users. Key generation requires a
temporally dynamic channel, and the channel variation can
be introduced by the movement of users and/or surrounding
objects [25].

This section presents a general model of preprocessing
procedure including PCA, DCT, and WT. We then derive the
secret key rate of the key generation with signal preprocessing.

A. Signal Preprocessing Model

During channel sounding, Alice and Bob alternately send
probe signals to each other, and estimate the CSI. The k-th
channel estimation vector with a length of N can be written
as

h(k)
u = h(k) + n(k)

u , (1)

where u = {a, b} denotes Alice and Bob, respectively, h(k)

follows complex Gaussian distribution, and nu is independent
and identically distributed (i.i.d.) zero-mean complex Gaussian
noise with variance E

{
n

(k)
u (n

(k)
u )H

}
= σ2

nIN . After K

channel samplings, Alice and Bob can construct matrix H̃u

as

H̃u = [h(0)
u ,h(1)

u , · · · ,h(K−1)
u ], (2)

where h
(k)
u and h

(l)
u are assumed to be i.i.d., k, l ∈

[0, 1, · · · ,K − 1]. Therefore, the superscript is omitted for
simplicity from now on. Define the channel signal-to-noise
ratio (SNR) as

SNR =
E{hHh}
Nσ2

n

. (3)

Linear signal processing transforms construct various sets
of standard independent bases {u(i)} and the transformation
matrix can be given as a N ×N unitary matrix

U = [u(1),u(2), · · · ,u(N)]. (4)

DCT and WT are linear transforms which are independent
of the data. The (i, j)-th element of the DCT matrix UDCT

can be expressed as [26]

[
UDCT

]
ij

=
1√
N

{
1, i = 1√

2 cos
(

(i−1)(2j−1)π
2N

)
, i > 1.

(5)

Haar transform (HT) is the simplest form of the WT. This
transform cross-multiplies a function against the Haar wavelet

with various shifts and stretches. The (i, j)-th element of the
HT matrix UHT is given by [27] for i = 1,[

UHT
]
ij

=
1√
N
, j = 1, 2, · · · , N (6)

and for any i > 1 and i = 2p + q − 1, where 2p is the largest
power of 2 contained in i and q − 1 is the remainder,

[UHT]ij =
1√
N

 2p/2, (q − 1)/2p ≤ j < (q − 0.5)/2p

−2p/2, (q − 0.5)/2p ≤ j < q/2p

0, otherwise.
(7)

On the other hand, PCA is a data dependent transform. The
covariance matrix of the ideal channel h can be decomposed
as

Rh = E
{
hhH

}
= UhΛhU

H
h , (8)

where Uh = [u
(1)
h ,u

(2)
h , . . . ,u

(N)
h ] is the eigenmatrix and Λh

is a diagonal matrix, whose diagonal entries are the sorted
eigenvalues, denoted by λi (λ1 ≥ λ2 ≥ . . . ≥ λN ). Uh is the
transformation matrix for PCA.

After transform domain mapping, matrix H̃u is transformed
to matrix Yu = [y

(0)
u ,y

(1)
u , · · · ,y(K−1)

u ] by expanding the
CSI estimates with their projections on these bases

Yu = UHH̃u. (9)

This process can be mathematically modeled as multiplying
CSI estimates with specific unitary matrix U.

However, not all column vectors in Yu can be employed
for secret key generation purpose. For example, in WT, some
high frequency components are discarded and in PCA, only a
small part of principal components are used for key generation.
Thus, signal reconstruction reorders the column vectors and
select parts of them to form a M×K matrix Ỹu. On one hand,
a large number of components are discarded since there are
redundancies which do not contribute to secret key rate. On the
other hand, some components which contain little information
are not used in practice either. Although trimming them causes
certain loss of information, it is too costly to use them as
they are severely corrupted by noise. Combined with signal
reconstruction, the mathematical model is modified to multiply
CSI estimates H̃u with a tall unitary matrix

V =
[
v(1),v(2), . . . ,v(M)

]
, (10)

which is a N ×M matrix and satisfies VHV = IM ,M ≤ N.
After signal reconstruction, the output M ×K matrix Ỹu =

[ỹ
(0)
u , ỹ

(1)
u , · · · , ỹ(K−1)

u ] is obtained by

Ỹu = VHH̃u, (11)

which is the output signal of preprocessing procedure.

B. Secret Key Rate Optimization
The secret key rate of Alice’s and Bob’s mapped signals

after transform domain mapping is computed by

R =
1

N
I(ya; yb|hae,hbe,U)

=
1

N
(I(ya; yb)− I(ya; hae,hbe,U)), (12)
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where hae and hbe is the channel from Alice to Eve and the
channel from Bob to Eve, respectively. I(ya; hae,hbe,U) is
the mutual information between ya and hae,hbe,U, which
represents the information leaked to eavesdroppers. The leak-
age can be attributed to two reasons, i.e. Eve’s passive
eavesdropping on her channel observation hae and hbe, and
transmission of unitary matrix U over public channel. As
shown in existing work [25, 28], when Eve is located more
than 10 wavelengths away from Alice and Bob in an en-
vironment not with strong LoS, she experiences indepen-
dent fading. Therefore, we do not take into account the
information leakage due to Eve’s passive eavesdropping on
the channel observations. For data independent transform,
e.g. DCT and WT, U is independent of ya. As it will be
analyzed in detail in Section III-C, the information leakage
of transmitting eigenvector is very small, thus, we treat the
amount of information leakage in PCA algorithm as zero.
In summary, I(ya; hae,hbe,U) is considered as zero in this
section. According to [29],

R =
1

N
I(ya; yb)

=
1

N
log2

|Rya | |Ryb |
|Rya |

∣∣Ryb −RyaybR
−1
ya Rybya

∣∣
=

1

N
log2

∣∣Λh + σ2
nI
∣∣∣∣∣Λh + σ2

nI−Λh(Λh + σ2
nI)
−1

Λh

∣∣∣
=

1

N

N∑
i=1

log2

1

1−
(

λi/σ2
n

1+λi/σ2
n

)2 . (13)

The secret key rate R is independent of the unitary matrix
U, only relying on the eigenvalues of the channel covariance
matrix and the noise variance. As unitary transforms are in-
vertible, they do not affect the secret key rate. In practice, due
to the time and frequency correlation of the observation, the
rank of the covariance matrix Rh is much smaller than N , and
only a few eigenvalues dominate the secret key rate. To reduce
the redundancy, we only exploit M dominant components for
key generation and drop the other weak components.

As shown in (11), the reconstructed signals obtained by
Alice and Bob are ỹa = VHha, ỹb = VHhb, respectively.
Thus, the secret key rate is calculated as

R̃ =
1

N
log2

|Rỹa | |Rỹb |

|Rỹa |
∣∣∣Rỹb −RỹaỹbR

−1
ỹa

Rỹbỹa

∣∣∣
=

1

N
log2

∣∣VH(Rh + σ2
nI)V

∣∣∣∣∣VH(Rh+σ2
nI)V−VHRh(Rh+σ2

nI)
−1

RhV
∣∣∣ .

(14)

Our main objective is to design the optimal tall unitary matrix
V, maximizing the key rate, which can be expressed as

V∗ = arg max
V

R̃ (15a)

s.t. VHV = I. (15b)

We have the following theorem for this optimization problem.

Theorem 1: The optimal transform matrix V∗ is given by the
eigenvectors of the channel covariance matrix corresponding
to the M maximum eigenvalues, i.e.,

V∗ =
[
u

(1)
h ,u

(2)
h , . . . ,u

(M)
h

]
. (16)

Proof: See Appendix A.
From Theorem 1, we can observe that the optimal V is

consisted of eigenvectors corresponding to the maximum M
eigenvectors of the covariance matrix. This means that PCA
achieves the optimal performance among all tall unitary matrix
transforms from the perspective of secret key rate. Particularly,
when the rank of Rh is M, R̃ = R.

III. PRINCIPAL COMPONENT ANALYSIS ALGORITHM

In this section, we analyze two specific realization algo-
rithms of PCA and present an overall comparison results of
them.

A. Algorithm Description

The channel covariance matrix at user u is calculated as

Rhu = E
{
huh

H
u

}
= Uh

(
Λh + σ2

nIN
)
UH
h , (17)

which indicates that although the received signals at Alice
and Bob are different, their eigenvectors are identical. How-
ever, in practice, the estimate of covariance matrix is always
inaccurate as true channel probability distribution is unknown
and ensemble average is approximated by time or frequency
average, which is given as

Rhu
= UuΛuU

H
u ≈

1

K

K−1∑
k=0

h(k)
u h(k)H

u . (18)

Note that Uu and Λu are different from Uh and Λh due to
the noise. Uh and Λh are the exact eigenmatrix and diagonal
matrix with eigenvalues of the covariance matrix of ideal
channel h, while Uu and Λu are the eigenmatrix and diagonal
matrix with eigenvalues of the estimated covariance matrix of
channel at Alice and Bob.

As a result, there is a deviation between the covariance
matrices of Alice and Bob. The relationship between channel
estimates of Alice and Bob can be modified as

hb = ha + nd, (19)

where nd ∈ CN×1 is independent with ha, representing the
observation deviation noise. As the deviation is caused by the
ensemble average approximation, we assume nd is colored
Gaussian noise with the covariance Rnd

.
Even a small deviation will result in an enormous difference

to their corresponding eigenvalues and eigenvectors. To solve
this problem, Alice can send her eigenvector to Bob and both
will use it for signal reconstruction [15, 16], which is named
as PCA algorithm with common eigenvector. On the other
hand, Alice and Bob can calculate their own eigenvectors and
use them for signal reconstruction without any interaction,
which is called PCA algorithm with private eigenvectors in this
paper. Implementation block diagrams of these two methods
are summarized in Fig. 1.
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Alice

Eigenvalue Decomposition, 

Bob

Eigenvalue Decomposition, 

Covariance Matrix Calculation, 
ahR

aU

aVSelect Eigenvector Matrix,    

H

a a a V HYSignal Reconstruction, 

Covariance Matrix Calculation, 

Select Eigenvector Matrix,    

Signal Reconstruction, 
H

bb b V HY

bV

bU

bhR

(a)

Alice Bob

Select Eigenvector Matrix,
Transmission

Select Eigenvector Matrix,

Covariance Matrix Calculation,
ahR

Eigenvalue Decomposition, aU

aV

Signal Reconstruction, H

a a a V HY Signal Reconstruction,   
H

b a b V HY

aV

(b)

Fig. 1: (a) PCA with private eigenvector. (b) PCA with
common eigenvector.

B. Key Agreement Analysis

Cross-correlation analysis can quantify the similarity be-
tween two signals, which is used here to evaluate the key
agreement. The cross-correlation coefficient of user u’s and
v’s i-th transformed components can be given as

ρi =
|E {yuiyvi}|√

E {yuiyui}E {yviyvi}
, i ∈ {0, · · · , N}. (20)

When calculating ρci for PCA algorithm with common eigen-
vector, yui = (u

(i)
a )Hhu. On the other hand, when calculating

ρpi for PCA with private eigenvector, yui = (u
(i)
u )Hhu. For

both cases, we calculate lower bounds of Alice’s and Bob’s
i-th cross-correlation coefficients and compare them as shown
by the following theorem.

Theorem 2: Alice’s and Bob’s correlation coefficient lower
bounds of PCA with common and private eigenvectors are
respectively given by

ρci,lb =

√
λi

λi + δ
, (21)

ρpi,lb =

√√√√ λi|(u(i)
a )Hu

(i)
b |2

λi|(u(i)
a )Hu

(i)
b |2 +

∑
j 6=i λj |(u

(j)
a )Hu

(i)
b |2 + δ

,

(22)

where δ = maxi(u
(i)
a )HRnd

u
(i)
a . The relationship between

ρci,lb and ρpi,lb is

ρci,lb ≥ ρ
p
i,lb. (23)

Proof: See Appendix B.
Remark 1: Consider a special case Rnd

= σ2
nI, which

means that the noise nd consists of i.i.d. zero-mean complex
Gaussian white random variables with variance σ2

n. In this

case, the eigenvectors satisfy u
(i)
a = u

(i)
b , and Alice’s and

Bob’s correlation coefficient ρci = ρpi =
√
λi/(λi + σ2

n),
which benefits from the increase of SNR and eigenvalue.
When SNR is fixed, the components with higher variances
can achieve better key agreement.

Remark 2: Theorem 2 reveals that for any i-th component,
the key agreement lower bound of PCA algorithm with com-
mon eigenvector is higher than that with private eigenvectors.
Moreover, when SNR is fixed, ρci,lb benefits from the increase
of eigenvalue. The above theorem proves that the transmission
of eigenvector can indeed improve the key agreement between
Alice and Bob.

Since eigenvalue decomposition is a high resource-
consuming step, Bob’s computational expense is much smaller
in PCA algorithm with common eigenvector than that with pri-
vate eigenvectors, which is beneficial and desirable in certain
scenarios. For example, Alice is an access point with strong
computational capacity while Bob is a low cost embedded
device. Thus, it is essential to analyze whether transmitting
Va to Bob will give Eve chance to guess the secret key.

C. Information Leakage Analysis

The transmission of eigenvector over an insecure public
channel can cause information leakage, particularly when
Eve can also obtain the eigenvalue. If Eve obtains enough
information, she can perform a brute-force search to find the
secret key. The eigenvector indicates the eigen-directions, and
the eigenvalue indicates the energy on each direction. When
Eve knows both eigenvector and eigenvalue, she can deduce
the covariance matrix and vice versa. Therefore, we calculate
the leakage ratio caused by transmitting covariance matrix,
which is the upper bound of the leakage caused by transmitting
eigenvector.

Covariance matrix provides the statistical information of
channel vector hu which narrows down brute-force search
scope of Eve. Since secret key is generated from instantaneous
channel measurements which are unknown to Eve, the infor-
mation leakage rate depends on the dimensions of statistical
information compared with that of instantaneous information.

The information leakage caused by transmitting covariance
matrix Rhu

can be expressed as

I(Ỹu; Rhu) = H(Ỹu)−H(Ỹu|Rhu)

= H(Ỹu)−H(Ỹu|Vu,Rhu). (24)

As Ỹu = VH
u H̃u and Rhu

= 1
K H̃uH̃

H
u , we can obtain

ỸuỸ
H
u = KVH

u Rhu
Vu.

Let Uu = [Vu A] be a unitary matrix. We can construct
Yu as

Yu =

[
Ỹu

B

]
= UH

u H̃u =

[
VH
u H̃u

AHH̃u

]
. (25)
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As Uu is the eigenmatrix of Rhu
, we can have

H(Ỹu|Vu,Rhu
) = H(Ỹu|Uu,U

H
u Rhu

Uu)

= H(Ỹu|Uu,YuY
H
u )

= H

(
Ỹu|Uu,

[
ỸuỸ

H
u ỸuB

H

BỸH
u BBH

])
.

(26)

When the data length is long enough, Ỹu and B becomes
independent, and we have BỸH

u = ỸuB
H = 0. Then,

H(Ỹu|Vu,Rhu
) = H(Ỹu|Uu, ỸuỸ

H
u ,BBH). (27)

In addition, Uu is the eigenmatrix of Rhu
. Thus, Uu

depends on Rhu
, independent of Ỹu, and we have

H(Ỹu|Vu,Rhu
) = H(Ỹu|Uu, ỸuỸ

H
u ,BBH)

= H(Ỹu|ỸuỸ
H
u ). (28)

Thus,

I(Ỹu; Rhu
) = H(Ỹu)−H(Ỹu|ỸuỸ

H
u ). (29)

As shown in (29), the information leakage is related to the
equivocation of a M ×K matrix Ỹu on condition of a known
M ×M matrix ỸuỸ

H
u . In practice, K is usually much larger

than M . As the elements of Ỹu are independent, the matrix
ỸuỸ

H
u approximates to a diagonal matrix,

ỸuỸ
H
u ≈ Λ̃u, (30)

where Λ̃u = diag{λ1+σ2
n, λ2+σ2

n, · · · , λM+σ2
n}. Therefore,

matrix ỸuỸ
H
u provides M constraint equations of the M×K

elements in matrix Ỹu. At most M basic variables in Ỹu

can be solved in terms of MK − M free variables. When
these constraint equations are nonlinear or non-independent,
the number of basic variables is less than M and the number
of free variables is more than MK −M .

Assume that the elements of matrix Ỹu is uniformly quan-
tized in a discrete set with cardinality S. H(Ỹu|ỸuỸ

H
u ) can

be approximated by

H(Ỹu|ỸuỸ
H
u ) ≈ (MK −M) log(S). (31)

As Ỹu has MK free variables, H(Ỹu) can be expressed as

H(Ỹu) = MK log(S). (32)

Thus, the information leakage can be expressed as

I(Ỹu; Rhu) ≈M log(S). (33)

In this paper, the information leakage ratio η is defined as
the ratio of the mutual information of I(Ỹu; Rhu

) and the
entropy of Ỹu and can be given as

η =
I(Ỹu; Rhu

)

H(Ỹu)
≈ 1

K
,K > M, (34)

which is a monotonic decreasing function. Therefore, a large
K in calculating covariance matrix can reduce information
leakage ratio. However, large K also means that secret key
cannot be produced immediately. Therefore, K should be
reasonably designed to make a tradeoff between real-time and

information leakage. For security purpose, we should at least
wipe off 1/K bits in privacy amplification.

The covariance matrix provides information of both eigen-
vectors and eigenvalues. When Eve can only obtain eigenvec-
tors instead of covariance matrix, the leakage ratio is much
lower than η. Thus, when K is large, the information leakage
caused by transmitting eigenvector is negligibly small.

In summary, sharing the eigenvectors between Alice and
Bob can bring in higher key agreement, lower computational
expense and negligibly small information leakage. Therefore,
PCA algorithm with common eigenvector is superior to that
with private eigenvector from an overall perspective.

IV. KEY GENERATION PROCEDURES

Besides channel sounding (with signal preprocessing), a key
generation system also requires steps including quantization,
information reconciliation, and privacy amplification, which
are designed in this section.

After privacy amplification, Alice and Bob verify the agree-
ment of their candidate keys in groups and each group has a
length of L bits. Alice sends the Hash value of her candidate
key to Bob. When their candidate keys match each other,
a group of key with length L is established successfully.
Otherwise, the group of candidate key fails.

A. Quantization

After preprocessing, different components have different
SNRs, which can be expressed as

γi =
(u(i))HRhu

(i)

σ2
n

. (35)

For PCA preprocessing, γi can be written as

γi =
λ2
i

σ2
n

. (36)

Note that γi in (36) represents the SNRs of different compo-
nents, which is different from the channel SNR defined in (3).
As the index of components increases, the SNR decreases.
To make full use of high SNR of dominant components,
we employ flexible quantization levels in the quantization
algorithm.

Define key error rate (KER) as the number of failed groups
divided by the number of total candidate key groups. In
practice, to satisfy the high agreement, the KER need to be less
than 10−3. To meet the KER requirement, flexible quantization
levels are set according to their SNRs. Employing the similar
methodology in [15], we compute the SNR thresholds for
various quantization levels Q as shown in Table I. For each
component with a SNR γi among these thresholds can set its
quantization level Qi. Then, Alice and Bob use the cumula-
tive distribution function (CDF) of their i-th components to
quantize their range of values into Qi equally likely regions
and generates log2 Qi bits based on this quantization [16].
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TABLE I: SNR THRESHOLDS TO ACHIEVE KER = 10−3

FOR VARIOUS QUANTIZATION LEVELS WHEN L = 128

Q = 21 Q = 22 Q = 23 Q = 24 Q = 25

γi (dB) 17.5 20 23 27 30

B. Information Reconciliation

To further reduce the KER, distributed source coding
(DSC) [30] is used. Sartipi and Fekri proposed a scheme
for DSC to achieve any arbitrary rate on the Slepian-Wolf
rate region using low density parity check code (LDPC) [31].
However, the belief-propagation iterative decoding algorithm
is of high computational complexity. To reduce the complexity,
we propose a simple decoding algorithm based on bit-flipping.

For a group of quantized key sequences qa and qb with
length LR, the flow chart of the decoding algorithm is illus-
trated in Fig. 2. The algorithm includes the following main
steps:

First, the flipping factor τ is initialized as

τ = [τ (0), τ (1), · · · , τ (LR−1)], (37)

and

τ (r) =


1−

∣∣∣∣ ỹ(r)b

σ2
n

∣∣∣∣ , ∣∣∣∣ ỹ(r)b

σ2
n

∣∣∣∣ ≤ 1

0,

∣∣∣∣ ỹ(r)b

σ2
n

∣∣∣∣ > 1,
(38)

where ỹ
(r)
b is the corresponding input signal of q

(r)
b before

quantization.
Then, syndromes sa and sb are calculated respectively by

sa = qaG
H , sb = qbG

H , (39)

where G is a LQ × LR check matrix.
A bit-flipping loop begins when sb 6= sa. The flipping factor

τ (r) is updated as

τ (r) =

{
τ (r) + 2δ, N (r) = W (r)

τ (r) + δ, N (r) = W (r) − 1,
(40)

where δ is constant, N (r) is the number of unequal equations
for each q

(r)
b , and W (r) is the r-th column weight of G.

Then, each q
(r)
b with maximum N (r) is flipped if τ (r) > ∆

and ∆ is a constant threshold. When q
(r)
b is flipped, τ (r) is

updated to be 0.5. Otherwise, τ (r) = τ (r) + δ. When none of
q

(r)
b is flipped, q

(r)
b with the maximum τ (r) is flipped and the

corresponding τ (r) = τ (r) − 2δ.
Finally, the information reconciliation process is completed

when sb = sa or after the set value of iterations.
Denoting Rec = 1 − LQ/LR as the LDPC rate, the KGR

is defined as the number of candidate key bits generated per
channel sounding and is given as

KGR =

M∑
i=1

log2(Qi)Rec(1− η). (41)

For preprocessing algorithms without interaction, η = 0,
and for PCA algorithm with common eigenvectors, η can be
calculated according to (34).

Alice Bob

Quantized signal aq

Syndrome

Initialize

Quantized signal

Syndrome

Yes

No

Update

Flip    according to

Iteration>Set Value?

Yes

End

No

as

H

a as q G bq

bs

H

b bs q G

b as s ?

bq

τ

τ

τ

Fig. 2: LDPC-based information reconciliation.

C. Privacy Amplification

Privacy amplification allows legitimate users to distill a
shorter but almost completely secret key from a common
random variable about which Eve has partial information [32].
Cryptographic hash functions are applied to distill the gathered
entropy to a final key. According to the leftover hash lemma,
when an adversary only learns about tseq bits of a nseq bits
sequence, we can produce a key of L = nseq − tseq bits, over
which the adversary has almost no knowledge [33].

We use Message-Digest Algorithm 5 (MD5) in this paper
for privacy amplification. MD5 is a widely used hash function
which maps data of arbitrary size to data of 128 bits, which
is given as

g : {0, 1}nseq → {0, 1}L=128. (42)

In order to perform the MD5 hash function g, Alice and Bob
need to calculate the input sequence length nseq . During the
information reconciliation, the syndrome of LDPC transmitted
over public channel leaks information to eavesdroppers. In
addition, the information leakage ratio of the PCA algorithm
is η as analyzed in Section III-C. The length of the secret key,
L, can be given as

L = nseqRec(1− η). (43)

Thus, in order to produce secret key with a length of L-bit,
Alice and Bob should at least generate

nseq = d L

Rec(1− η)
e (44)

bits common random sequence, where d·e represents ceiling
operation. For example, when the rate of LDPC used in
information reconciliation is Rec = 1/2 and the number
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TABLE II: SIMULATION PARAMETERS

Parameter Value
Channel model SCM

Scenario Urban-macro
Path number Np 6

Key length L 128
SNR 10 dB

Iterations of LDPC 200
Carrier frequency fc 2 GHz

Bandwidth Bw 3.84 MHz
Carrier number F 256
Sampling interval 0.5 ms

of channel samplings K = 500, i.e., η ≈ 0.002 for PCA
algorithm with common eigenvector, nseq is calculated to be
257.

The input sequence of the leftover hash lemma should be
uniform random, otherwise, it will finally result in a weak
key. For example, when there are long runs of 0s and 1s in
the input, the output sequence of the MD5 function seems to
be randomly distributed, but Eve can crack it with dictionary
attack. The actual effective length of this key is far less
than L, which will need further privacy amplification. Signal
preprocessing, such as PCA, DCT and HT, etc., can condense
the redundant signals, and therefore can prepare highly random
bit sequence for privacy amplification. It is significant and
efficient to compress these signals first, rather than processing
redundant signals in quantization, information reconciliation
and then wiping them out in privacy amplification. In the
simulation, we apply the test suite recommended by the
National Institute of Standards and Technology (NIST) [34]
to verify the randomness of bit sequences before privacy
amplification.

V. SIMULATION RESULTS

In this section, we evaluated the performance of the signal
preprocessing through numerical simulations. We also com-
pared with key generation without preprocessing, i.e., denoted
as “Direct” in the figures. Haar wavelet is used in WT.

3GPP Spatial Channel Model (SCM) is a geometry-based
channel model, where the channel parameters are based
on statistical distributions extracted from channel measure-
ments [35]. We built our simulation model based on a Matlab
implementation of the SCM [36], with detailed parameters
summarized in Table II. Alice and Bob are randomly dis-
tributed and the distance between them is uniformly distributed
in [35, 200] m. We focus on the non line-of-sight (NLOS)
scenario.

The decorrelation algorithms investigated in this paper work
for any channel measurement with correlation, e.g., frequency
correlation in OFDM systems and spatial correlation in MIMO
systems. In this paper, we employed OFDM system as a case
study. In particular, an OFDM model with 256 subcarriers is
utilized. We considered two scenarios: (1) hu is constructed
by the channel responses of all the 256 subcarriers in one
OFDM symbol; (2) hu is constructed by combining subcarrier
subsets from four continuous OFDM symbols, with each
subset selecting one subcarrier out of every four adjacent
subcarriers, i.e., the indexes of the selected subcarriers are
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Fig. 3: Effects of the signal preprocessing on the secret key
rate, Scenario (1).
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Fig. 4: Effects of the signal preprocessing on the secret key
rate, Scenario (2).

{4, 8, · · · , 256}. The total selected subcarriers are also 256.
We generate K = 500 independent channel vectors hu to
calculate the channel covariance matrix.

Fig. 3 and Fig. 4 compare the effects of signal preprocessing
on the secret key rate of scenario 1 and scenario 2. We keep
the first M dominant components after the preprocessing and
calculate the secret key rate. We also put the results of all
the N components (“Total”) and M components but without
signal preprocessing (“Direct”) as comparison. Theorem 1 has
proven that PCA can achieve the optimal performance among
all N ×M tall unitary matrix transforms, which is validated
by the numerical results here. With PCA, the secret key rate
grows rapidly with the increase of M and approaches the total
secret key rate even for a small M (e.g., when M = 20).
This means that a few principal components contain the whole
characteristics of the channel information.

We can also notice that Scenario (2) has higher secret key
rates from Fig. 3 and Fig. 4. This is because in Scenario (1),
we selected all the subcarriers from one OFDM symbol, within
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Fig. 5: Secret key rate in different multipath environments.
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Fig. 6: Correlation coefficients of different PCA components.

which there is correlation between any frequency falling into
the coherence bandwidth. On the other hand, in Scenario (2),
there will be less correlation between the channel responses of
the subcarriers from the same symbol, and more randomness
is introduced from the time domain by combining subcarriers
from four OFDM symbols. Therefore, in the rest of this paper,
we constructed hu as in Scenario (2).

We further study the secret key rate and dominant com-
ponents in different multipath environments. As shown in
Fig. 5, when the number of paths, Np, increases, there is more
independent information to generate secret key, which leads to
the increase of the secret key rate.

Fig. 6 presents the comparison of the correlation coefficients
of different components and their lower bounds of PCA
with common eigenvector and private eigenvectors. When the
principal component index i increases, the correlation coeffi-
cients and the lower bounds decrease, because the channel
eigenvalues are sorted descending. From Fig. 6, it can be
observed that the lower bound of common eigenvector is
higher than that of private eigenvectors, which validates the
Theorem 2.
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Fig. 7: Correlation coefficients vs. distance between Bob and
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We also investigate the eavesdropping channel (between
Alice and Eve) with Eve located one wavelength away from
Bob is considered as in [13]. As shown in Fig. 6, none of
the principal components of the eavesdropping channel has a
high correlation coefficient. In addition, we can observe that
common eigenvector brings little performance gains to Eve.

Moreover, Fig. 7 presents the correlation coefficients of the
first dominant component with different distances between
Alice, Bob and Eve. As a comparison, we also illustrate
ρe which denotes the correlation coefficient between original
channel gains of Alice and Eve. When the eavesdropping
distance is 10 λ, ρe decreases to about 0.1, which is quite
small. Moreover, it is observed that the coefficients of Eve
with common eigenvector ρc1 are almost the same with those
of private eigenvectors ρp1, which means that the eigenvector
transmission does not help eavesdropper.

Fig. 8 shows the KER performance of generated key with
PCA, DCT, WT, and Direct. We select M = 6 dominant
components, and for each component, we set quantization level
Qi = 2. Among these preprocessing algorithms, PCA achieves
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Fig. 9: KGR performance comparison.

the lowest KER approaching 10−3 at SNR of 4 dB. The KER
of DCT preprocessing approaches that of PCA, with about
1 dB performance loss. Compared with the WT and direct
preprocessing algorithms, the performance improved by PCA
is larger than 10 dB.

Fig. 9 compares the KGR performance of different pre-
processing schemes. We select M = 6 components, and the
quantization level on each component is selected according to
Table I, guaranteeing that the KER of each component is less
than 10−3. PCA scheme can reach the highest rate and have
about 2 dB performance gains compared with DCT. When
SNR is less than 20 dB, the received SNR on each component
of Direct scheme cannot reach the lowest threshold, and thus,
Direct scheme cannot generate secret key with 10−3 KER. In
a certain range of SNR, each component of Direct has almost
the same quantization level Qi. Therefore, the KGR growth
of Direct is incontinuous and the KGR curve has a stepwise
form with the change of SNR. KGR of PCA, DCT, and WT all
meets the key refresh requirements of the commercial systems.
For example, WiFi recommends to update the key (with a
length of 128-bit) once every hour [37].

NIST random test suite is a common tool to evaluate the
randomness feature of binary sequences [34], which is also
adopted in our work. The output results of each test is an
indicator called p-value. A tested sequence passes a test when
the p-value is greater than the threshold, usually chosen as
0.01. We perform 9 NIST statistical tests for 10, 000 trials.
Table III and Table IV show tests pass ratio and the averaged
p-value of the 256 bits sequences before privacy amplification,
respectively. First, the pass ratios of each specific test are given
in Table III. Then, the all-pass ratio represents the number of
bit sequences which pass all 9 tests divided by trials number.
The maximum number of each row is highlighted in bold. It
is observed that, PCA, DCT and HT achieve test pass ratios
higher than 0.8, while the pass ratio of Direct is only 0.6.

VI. CONCLUSIONS

The paper has provided a theoretical study of the prepro-
cessing technique in generating high-agreement uncorrelated

TABLE III: NIST STATISTICAL TEST PASS RATIO BEFORE
PRIVACY AMPLIFICATION

Direct PCA DCT WT
Approximate Entropy 0.9250 0.9917 0.9812 0.9812

Runs 0.8562 0.9771 0.9917 0.9729
Ranking 0.9187 0.9146 0.9313 0.9021

Longest runs of ones 0.9521 0.9896 0.9854 0.9812
Frequency 0.8042 0.9896 0.9833 0.9792

FFT 0.9896 0.9979 1.0000 1.0000
Block frequency 0.9771 0.9896 0.9938 0.9938
Cumulative sums 0.9563 1.0000 0.9958 0.9979

Serial 0.8438 0.9833 0.9729 0.9563
All-pass ratio 0.6000 0.8562 0.8521 0.8208

TABLE IV: NIST STATISTICAL TEST P-VALUE BEFORE
PRIVACY AMPLIFICATION

Direct PCA DCT WT
Approximate entropy 0.4080 0.5004 0.4925 0.4877

Runs 0.2510 0.4689 0.4817 0.4291
Ranking 0.4166 0.3753 0.3936 0.3884

Longest runs of ones 0.2919 0.3926 0.3863 0.3837
Frequency 0.2885 0.5048 0.4693 0.4612

FFT 0.4690 0.5852 0.6008 0.5962
Block frequency 0.4827 0.5062 0.4865 0.4920
Cumulative sums 0.5072 0.4996 0.5151 0.5104

Serial 0.2752 0.5049 0.4983 0.4538
0.4165 0.5190 0.5061 0.4721

secret key from the time-variant OFDM channel. The general
mathematical model of preprocessing approaches was first
established. Secret key rate expression of preprocessed sig-
nals was deduced and it revealed that PCA can achieve the
maximum rate among all preprocessing approaches including
DCT and WT. Then, the discussion turned to the two specific
realization algorithms, PCA with common eigenvector and
PCA with private eigenvector. The comparison results proved
that sharing the eigenvectors between Alice and Bob can
bring in higher key agreement and lower computation expense
with negligible information leakage. Finally, a system level
design of key generation was proposed, including channel
sounding, preprocessing, the flexible level quantization and in-
formation reconciliation using bit-flipping based LDPC codes
and privacy amplification. Simulation results reconfirmed the
optimality of PCA preprocessing and verified the superiority
of PCA algorithm with common eigenvector. In the proposed
PCA algorithm with common eigenvector, the computational
expense of Bob is significantly reduced. Thus, this algorithm
can be applied to the scenario where Alice is an access point
with strong computational capacity while Bob is a low cost
embedded device. Future work will focus on computation
overhead reduction of Alice.

APPENDIX A
PROOF OF THEOREM 1

Substituting Rh = UhΛhU
H
h into R̃ in (14), we can have

R̃ = log |VHUh(Λh + σ2
nI)UH

h V|
− log |VHUh((Λh + σ2

nI)−Λh(Λh + σ2
nI)−1Λh)UH

h V|.
(45)
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Define UV = UH
h V, and thus, UH

V UV = I. Then, R̃ can be
rewritten as

R̃ = log |σ2
nI + UH

V ΛhUV |
− log |σ2

nI + UH
V ΛhUV −UH

V (Λh(Λh + σ2
nI)−1Λh)UV |

= − log
∣∣(σ2

nI + UH
V ΛhUV −UH

V (Λh(Λh + σ2
nI)−1Λh)

×UV )
(
σ2
nI + UH

V ΛhUV

)−1
∣∣∣

=−log
∣∣∣I− (Λh + σ2

nI)−1/2ΛhUV

(
σ2
nI + UH

V ΛhUV

)−1

×UH
V Λh(Λh + σ2

nI)−1/2
∣∣∣ . (46)

Let Ũ = [UV UV ⊥] be a unitary matrix, where UV ⊥ ∈
CN×(N−M) forms a unitary basis for the orthogonal comple-
ment of span(UV), and then(
σ2
nI + Λh

)−1
= Ũ

(
σ2
nI + ŨHΛhŨ

)−1

ŨH

= Ũ

(
σ2
nI +

[
UH
V

UV
H
⊥

]
Λh [UV UV ⊥]

)−1

ŨH

= Ũ

[
UH
V (σ2

nI + Λh)UV UH
V ΛhUV ⊥

UV
H
⊥ΛhUV UV

H
⊥ (σ2

nI + Λh)UV ⊥

]−1

ŨH .

(47)

According to the block matrix inverse formula, we have[
UH
V (σ2

nI + Λh)UV UH
V ΛhUV ⊥

UV
H
⊥ΛhUV UV

H
⊥ (σ2

nI + Λh)UV ⊥

]−1

=

[ (
UH
V (σ2

nI + Λh)UV

)−1
0

0 0

]
+ M, (48)

where

M =

[
−(UH

V (σ2
nI + Λh)UV )−1UH

V ΛhUV ⊥
I

]
J−1

×
[
−UV

H
⊥ΛhUV (UH

V (σ2
nI + Λh)UV )−1 I

]
, (49)

and

J = UV
H
⊥ (σ2

nI + Λh)UV
H
⊥ −UV

H
⊥ΛhUV

×
(
UH
V (σ2

nI + Λh)UV

)−1
UH
V ΛhUV

H
⊥ . (50)

Since (σ2
nI+Λh)−1 is positive definite, J is a positive definite

matrix, and then M � 0. Substituting (48) into (47), we have(
σ2
nI + Λh

)−1
= Ũ

([(
UH
V (σ2

nI + Λh)UV

)−1
0

0 0

]
+M

)
ŨH

= UV

(
σ2
nI + UH

V ΛhUV

)−1
UH
V + ŨMŨH ,

(51)

which means
(
σ2
nI + Λh

)−1 �
UV

(
σ2
nI + UH

V ΛhUV

)−1
UH
V . The equality holds up

if UV = E, where E = [IM 0(N−M)×M ]T . Let

Λ̃h = (Λh + σ2
nI)−1/2Λh, and Λ̃

T

h = Λh(Λh + σ2
nI)−1/2.

Then, we have

Λ̃h

(
σ2
nI + Λh

)−1
Λ̃
T

h �Λ̃hUV

(
σ2
nI + UH

V ΛhUV

)−1
UH
V Λ̃

T

h .
(52)

Let λi(A) represent the ith sorted eigenvalue of A
(λ1(A) ≥ λ2(A) ≥ · · · ≥ λN (A)), and then

1 ≥ λi
(
Λ̃h

(
σ2
nI + Λh

)−1
Λ̃
T

h

)
≥ λi

(
Λ̃hUV

(
σ2
nI + UH

V ΛhUV

)−1
UH
V Λ̃

T

h

)
. (53)

Due to

Rank
(
Λ̃hUV

(
σ2

nI + UH
VΛhUV

)−1
UH

VΛ̃
T

h

)
= M, (54)

where Rank{·} denotes the rank of the matrix. Thus, for i =
M + 1,M + 2, . . . , N , we have [38]

λi

(
Λ̃hUV

(
σ2
nI + UH

V ΛhUV

)−1
UH
V Λ̃

T

h

)
= 0, (55)

and∣∣∣I− Λ̃hUV

(
σ2
nI + UH

V ΛhUV

)−1
UH
V Λ̃

T

h

∣∣∣
=

M∏
i=1

(
1− λi

(
Λ̃hUV

(
σ2
nI + UH

V ΛhUV

)−1
UH
V Λ̃

T

h

))
≥

M∏
i=1

(
1− λi

(
Λ̃hE

(
σ2
nI + EΛhE

)−1
EHΛ̃

T

h

))
=
∣∣∣I− Λ̃hE

(
σ2
nI + EHΛhE

)−1
EHΛ̃

T

h

∣∣∣ . (56)

Thus, the maximal R̃ is achieved when UV = E. The optimal
transform matrix V =

[
u

(1)
h ,u

(2)
h , . . . ,u

(M)
h

]
.

APPENDIX B
PROOF OF THEOREM 2

For the common eigenvectors, we can calculate the covari-
ance of the received signals as

E {yaiy∗ai} = (u(i)
a )HRha

u(i)
a = λi, (57a)

E {yaiy∗bi} = (u(i)
a )HE

{
ha(ha + nd)

H
}

u(i)
a = λi, (57b)

E {ybiy∗bi} = (u(i)
a )H(Rha + Rnd

)u(i)
a

= λi + (u(i)
a )HRnd

u(i)
a . (57c)

Let δ = maxi(u
(i)
a )HRnd

u
(i)
a , and the correlation coefficient

is derived as

ρci =

√
λi

λi + (u
(i)
a )HRnd

u
(i)
a

≥
√

λi
λi + δ

∆
= ρci,lb. (58)

For the private eigenvectors, the covariance of the received
signals can be expressed as

E {yaiy∗ai} = (u(i)
a )HRhau(i)

a = λi, (59a)

E {yaiy∗bi} = (u(i)
a )HE

{
ha(ha + nd)

H
}

u
(i)
b

= (Rha
u(i)
a )Hu

(i)
b = λi(u

(i)
a )Hu

(i)
b , (59b)

E {ybiy∗bi} = (u
(i)
b )H(Rha

+ Rnd
)u

(i)
b

= (u
(i)
b )HRhau

(i)
b + (u

(i)
b )HRnd

u
(i)
b . (59c)

Since Rha
= UaΛaU

H
a =

∑
i λiu

(i)
a (u

(i)
a )H , we can have

ρpi ≥

√√√√ λi|(u(i)
a )Hu

(i)
b |2

λi|(u(i)
a )Hu

(i)
b |2 +

∑
j 6=i λj |(u

(j)
a )Hu

(i)
b |2 + δ

∆
= ρpi,lb. (60)



12

With the expressions (58) and (60), we can have

ρci,lb
ρpi,lb

=

√√√√λi|(u(i)
a )Hu

(i)
b |2 + δ +

∑
j 6=i λj |(u

(j)
a )Hu

(i)
b |2

λi|(u(i)
a )Hu

(i)
b |2 + δ|(u(i)

a )Hu
(i)
b |2

.

(61)

As
∑N
j=1 |(u

(j)
a )Hu

(i)
b |2 = |u(i)

b |2 = 1, |(u(i)
a )Hu

(i)
b |2 ≤ 1. In

addition, with
∑
j 6=i λj |(u

(j)
a )Hu

(i)
b |2 ≥ 0, We can derive

ρci,lb
ρpi,lb

≥ 1. (62)
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