73 research outputs found

    Development of an Infrared Thermography System to Measure Boundary Layer Transition in a Low Speed Wind Tunnel Testing Environment

    Get PDF
    The use of infrared thermography for boundary layer detection was evaluated for use in the Cal Poly Low Speed Wind Tunnel (LSWT) and recommendations for the successful use of this technique were developed. In cooperation with Joby Aviation, an infinite wing model was designed, manufactured and tested for use in the LSWT. The wing was designed around a custom airfoil profile specific for this project, where the nearly-flat pressure gradient at a zero pitch angle would delay the chordwise onset of boundary layer transition. Steady-state, RANS numerical simulations predicted the onset of transition to occur at 0.75 x/c for the design Reynolds Number condition of 6.25x105. The wing was manufactured from 3D printed aluminum, with a wall thickness of 0.125 inches and a chord length of 13.78 inches. Two central rows of static pressure taps were used, each with 12 functional chordwise locations. The taps were able to generate strong correlation to the numerically predicted pressure coefficient distribution. The use of an infrared camera visualized and confirmed the presence of boundary layer transition at the chordline location anticipated by the early simulations. To do so, the model was pre-heated such that the differential cooling properties of laminar and turbulent flow would generate a clear temperature gradient on the surface correlating to boundary layer transition. Adjustment of the model’s pitch angle demonstrated a change in the onset location of boundary layer transition during the infrared testing. The change of onset location was seen to move forward along the chordline as the aerodynamic angle of attack was increased. Testing with a Preston Tube system allowed for the interpolation of local skin friction coefficient values at each static tap location. Application of both laminar and turbulent empirical assumptions, when compared to numerical expectations, allowed for the qualitative assessment of boundary layer transition onset. Overall, the wing model developed for this research proved capable of producing quality and repetitive results for the experimental goals it was designed to meet. The model will next be used in continued tests which will further explore the use of infrared thermography

    Experimental Results on a New Prototype Packaged Heat Pump System Retrofitted with Oil Flooded Compression and Regeneration Technology

    Get PDF
    The coefficient of performance and heating capacity of conventional air-to-air heat pumps decrease towards lower ambient temperatures. Heat pump systems are increasingly installed in residential homes but whereas they are already widespread in moderate climates, applications in very cold climates are limited. Since the heating load increases at low ambient temperatures, additional auxiliary heating systems are needed, which results in poor seasonal coefficients of performance. Oil-flooded compression is a technology to improve the performance of heat pump systems. This concept seeks to approach an isothermal compression process by injecting oil characterized by a higher specific heat than the refrigerant to absorb heat during the compression process. In a previous study (Yang et al. 2014), a 5-ton (17.6 kW) R410A packaged heat pump retrofitted with an oil injected compressor and regenerator was tested, in which one circuit within the indoor heat exchanger was modified to serve as an oil cooler. Up to 8% COP improvement was achieved for the oil flooded system relative to the baseline system. However, the heating capacity of the oil flooded system was found to be only slightly higher (1.6% to 3.3% improvement) than the baseline system. The potential of the oil flooded compression technology was not fully achieved due to the reduced heat transfer area of the condenser and unpredictable refrigerant flow maldistribution in the evaporator. The work presented in this paper shows the experimental results of a new prototype oil flooded system. This system has a different baseline configuration than the previous oil-flooded system in which the indoor coil face area is kept unchanged while an additional heat exchanger was added as the oil cooler. In addition, a new bigger counter-flow plate heat exchanger with low pressure drops was used as the regenerator. The results show that by injecting oil, the COP of the system was increased by 6.1% and the heating capacity by 5.7%. If the system is compared with a conventional heat pump (without regenerator and without oil injection), the COP improvement ranges from 4% to 15% depending on the oil mass fraction and operating temperature. The improvement in the heating capacity ranges from 0.4% up to 19%

    Acute coronary syndrome in Australia

    Get PDF
    BackgroundAcute coronary syndrome (ACS) is a significant contributor to both morbidity and mortality in Australia. Generally speaking, sufferers of ACS who live in rural areas and are treated at rural hospitals have poorer outcomes than those living in metropolitan areas.AimsTo characterise the differences in the management and outcomes of rural and metropolitan populations in the context of ACS, as well as identify factors responsible for these differences and suggest how they may be addressed.MethodA review of the current literature surrounding ACS in Australia was undertaken. Through the MEDLINE/PubMed database a thorough search using the terms “acute coronary syndrome” and “Australia” identified 460 papers for review, excluding abstracts and adding “rural”, “metropolitan”, “reperfusion”, and “outcomes” to this search narrowed the results to 149 papers for review. Data was also extracted from the Australian Institute of Health and Welfare and other Australian government publications. The review draws on insights from both local and international resources and seeks to provide an understanding of the contemporary landscape of ACS in both rural and metropolitan Australia. The review is broken down into three key sections:1. An outline of the 2011 National Heart Foundation of Australia/Cardiac Society of Australia and New Zealand (NHF/CSANZ) guidelines and adjuvant tools used in the assessment and treatment of ACS, and to what extent these guidelines have been implemented clinically.2. An exploration of the current landscape of ACS in Australia and identification of the disparities facing rural populations compared to those in metropolitan areas.3. Discussion of the factors that are resulting in poorer outcomes for ACS sufferers and suggestions of novel approaches towards addressing these factors.ConclusionDisparities exist between the management and outcomes of rural and metropolitan populations experiencing ACS. While the causes of these discrepancies are multifactorial, the onus is on the healthcare system to effectively reduce associated morbidity and mortality. Improvements in the management of ACS may be achieved through a continued reduction in call-to-needles time via the use of remote and mobile thrombolysis services as well as improvements in in-hospital risk assessment in order to flag and investigate those at risk of ACS

    IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic

    Get PDF

    Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury

    Get PDF
    Objective: We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. Study Design and Setting: We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, n = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified. Results: In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study. Conclusion: ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations

    Re-Imagining School Feeding : A High-Return Investment in Human Capital and Local Economies

    Get PDF
    Analysis shows that a quality education, combined with a guaranteed package of health and nutrition interventions at school, such as school feeding, can contribute to child and adolescent development and build human capital. School feeding programs can help get children into school and help them stay there, increasing enrollment and reducing absenteeism. Once children are in the classroom, these programs can contribute to their learning by avoiding hunger and enhancing cognitive abilities. The benefits are especially great for the poorest and most disadvantaged children. As highlighted in the World Bank’s 2018 World Development Report (World Bank 2018), countries need to prioritize learning, not just schooling. Children must be healthy, not hungry, if they are to match learning opportunities with the ability to learn. In the most vulnerable communities, nutrition-sensitive school meals can offer children a regular source of nutrients that are essential for their mental and physical development. And for the growing number of countries with a “double burden” of undernutrition and emerging obesity problems, well-designed school meals can help set children on the path toward more healthy diets. In Latin America, for example, where there is a growing burden of noncommunicable diseases (NCDs), school feeding programs are a key intervention in reducing undernutrition and promoting healthy diet choices. Mexico’s experience reducing sugary beverages in school cafeterias, for example, was found to be beneficial in advancing a healthy lifestyle. A large trial of school-based interventions in China also found that nutritional or physical activity interventions alone are not as effective as a joint program that combines nutritional and educational interventions. In poor communities, economic benefits from school feeding programs are also evident—reducing poverty by boosting income for households and communities as a whole. For families, the value of meals in school is equivalent to about 10 percent of a household’s income. For families with several children, that can mean substantial savings. As a result, school feeding programs are often part of social safety nets in poor countries, and they can be a stable way to reliably target pro-poor investments into communities, as well as a system that can be scaled up rapidly to respond to crises. There are also direct economic benefits for smallholder farmers in the community. Buying local food creates stable markets, boosting local agriculture, impacting rural transformation, and strengthening local food systems. In Brazil, for example, 30 percent of all purchases for school feeding come from smallholder agriculture (Drake and others 2016). These farmers are oftentimes parents with schoolchildren, helping them break intergenerational cycles of hunger and poverty. Notably, benefits to households and communities offer important synergies. The economic growth in poor communities helps provide stability and better-quality education and health systems that promote human capital. At the same time, children and adolescents grow up to enjoy better employment and social opportunities as their communities grow
    corecore