91 research outputs found

    Androgens and Cardiovascular Risk Factors in Polycystic Ovary Syndrome

    Get PDF
    Polycystic Ovary Syndrome (PCOS) is the most common endocrine disorder in reproductive-aged women. Clinical or biochemical signs of androgen excess is a cardinal feature of the syndrome and are present in approximately 80% of women with PCOS. Increased blood pressure and insulin resistance, two major cardiovascular risk factors, are frequently present in women with PCOS. This chapter aims to highlight the fundamental role of androgens in mediating the increased blood pressure and insulin resistance in women with PCOS. This chapter is also a call for action to develop new pharmacological therapies that target the androgen synthesis and androgen receptor activation dysregulation present in women with PCOS. These novel therapies will allow to prevent or mitigate the excess androgen-mediated cardiovascular risk factors that affect women with PCOS

    Nuclear energy in the public sphere: Anti-nuclear movements vs. industrial lobbies in Spain (1962-1979)

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11024-014-9263-0This article examines the role of the Spanish Atomic Forum as the representative of the nuclear sector in the public arena during the golden years of the nuclear power industry from the 1960s to 1970s. It focuses on the public image concerns of the Spanish nuclear lobby and the subsequent information campaigns launched during the late 1970s to counteract demonstrations by the growing and heterogeneous anti-nuclear movement. The role of advocacy of nuclear energy by the Atomic Forum was similar to that in other countries, but the situation in Spain had some distinguishing features. Anti-nuclear protest in Spain peaked in 1978 paralleling the debates of a new National Energy Plan in Congress, whose first draft had envisaged a massive nuclearization of the country. We show how the approval of the Plan in July 1979, with a significant reduction in the nuclear energy component, was influenced by the anti-nuclear protest movements in Spain. Despite the efforts of the Spanish Atomic Forum to counter its message, the anti-nuclear movement was strengthened by reactions to the Three Mile Island accident in March 1979

    Clinical spectrum time course in non-Asian patients positive for anti-MDA5 antibodies

    Get PDF
    Objectives: To define the clinical spectrum time-course and prognosis of non-Asian patients positive for anti-MDA5 antibodies. Methods: We conducted a multicentre, international, retrospective cohort study. Results: 149 anti-MDA5 positive patients (median onset age 53 years, median disease duration 18 months), mainly females (100, 67%), were included. Dermatomyositis (64, 43%) and amyopathic dermatomyositis (47, 31%), were the main diagnosis; 15 patients (10%) were classified as interstitial pneumonia with autoimmune features (IPAF) and 7 (5%) as rheumatoid arthritis. The main clinical findings observed were myositis (84, 56%), interstitial lung disease (ILD) (108, 78%), skin lesions (111, 74%), and arthritis (76, 51%). The onset of these manifestations was not concomitant in 74 cases (50%). Of note, 32 (21.5%) patients were admitted to the intensive care unit for rapidly progressive-ILD, which occurred in median 2 months from lung involvement detection, in the majority of cases (28, 19%) despite previous immunosuppressive treatment. One-third of patients (47, 32% each) was ANA and anti-ENA antibodies negative and a similar percentage was anti-Ro52 kDa antibodies positive. Non-specific interstitial pneumonia (65, 60%), organising pneumonia (23, 21%), and usual interstitial pneumonia-like pattern (14, 13%) were the main ILD patterns observed. Twenty-six patients died (17%), 19 (13%) had a rapidly progressive-ILD. Conclusions: The clinical spectrum of the anti-MDA5 antibodies-related disease is heterogeneous. Rapidly-progressive ILD deeply impacts the prognosis also in non-Asian patients, occurring early during the disease course. Anti-MDA5 antibody positivity should be considered even when baseline autoimmune screening is negative, anti-Ro52 kDa antibodies are positive, and radiology findings show a NSIP pattern

    Simulation studies for the Mini-EUSO detector

    Get PDF
    Mini-EUSO is a mission of the JEM-EUSO program flying onboard the International Space Station since August 2019. Since the first data acquisition in October 2019, more than 35 sessions have been performed for a total of 52 hours of observations. The detector has been observing Earth at night-time in the UV range and detected a wide variety of transient sources all of which have been modeled through Monte Carlo simulations. Mini-EUSO is also capable of detecting meteors and potentially space debris and we performed simulations for such events to estimate their impact on future missions for cosmic ray science from space. We show here examples of the simulation work done in this framework to analyze the Mini-EUSO data. The expected response of Mini-EUSO with respect to ultra high energy cosmic ray showers has been studied. The efficiency curve of Mini-EUSO as a function of primary energy has been estimated and the energy threshold for Cosmic Rays has been placed to be above 1021^{21} eV. We compared the morphology of several transient events detected during the mission with cosmic ray simulations and excluded that they can be due to cosmic ray showers. To validate the energy threshold of the detector, a system of ground based flashers is being used for end-to-end calibration purposes. We therefore implemented a parameterization of such flashers into the JEM-EUSO simulation framework and studied the response of the detector with respect to such sources

    Simulation studies for the Mini-EUSO detector

    Get PDF
    Mini-EUSO is a mission of the JEM-EUSO program flying onboard the International Space Station since August 2019. Since the first data acquisition in October 2019, more than 35 sessions have been performed for a total of 52 hours of observations. The detector has been observing Earth at night-time in the UV range and detected a wide variety of transient sources all of which have been modelled through Monte Carlo simulations. Mini-EUSO is also capable of detecting meteors and potentially space debris and we performed simulations for such events to estimate their impact on future missions for cosmic ray science from space. We show here examples of the simulation work done in this framework to analyse the Mini-EUSO data. The expected response of Mini-EUSO with respect to ultra high energy cosmic ray showers has been studied. The efficiency curve of Mini-EUSO as a function of primary energy has been estimated and the energy threshold for Cosmic Rays has been placed to be above 1021^{21} eV. We compared the morphology of several transient events detected during the mission with cosmic ray simulations and excluded that they can be due to cosmic ray showers. To validate the energy threshold of the detector, a system of ground based flashers is being used for end-to-end calibration purposes. We therefore implemented a parameterisation of such flashers into the JEM-EUSO simulation framework and studied the response of the detector with respect to such sources

    EUSO-SPB1 mission and science

    Get PDF
    The Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) was launched in 2017 April from Wanaka, New Zealand. The plan of this mission of opportunity on a NASA super pressure balloon test flight was to circle the southern hemisphere. The primary scientific goal was to make the first observations of ultra-high-energy cosmic-ray extensive air showers (EASs) by looking down on the atmosphere with an ultraviolet (UV) fluorescence telescope from suborbital altitude (33 km). After 12 days and 4 h aloft, the flight was terminated prematurely in the Pacific Ocean. Before the flight, the instrument was tested extensively in the West Desert of Utah, USA, with UV point sources and lasers. The test results indicated that the instrument had sensitivity to EASs of ⪆ 3 EeV. Simulations of the telescope system, telescope on time, and realized flight trajectory predicted an observation of about 1 event assuming clear sky conditions. The effects of high clouds were estimated to reduce this value by approximately a factor of 2. A manual search and a machine-learning-based search did not find any EAS signals in these data. Here we review the EUSO-SPB1 instrument and flight and the EAS search

    Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors

    Get PDF
    Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as EUSO-SPB2 and POEMMA, will be able to detect upward-moving extensive air showers induced by decay tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. we calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources

    Measurement of UV light emission of the nighttime Earth by Mini-EUSO for space-based UHECR observations

    Get PDF
    The JEM-EUSO (Joint Experiment Missions for Extreme Universe Space Observatory) program aims at the realization of the ultra-high energy cosmic ray (UHECR) observation using wide field of view fluorescence detectors in orbit. Ultra-violet (UV) light emission from the atmosphere such as airglow and anthropogenic light on the Earth\u27s surface are the main background for the space-based UHECR observations. The Mini-EUSO mission has been operated on the International Space Station (ISS) since 2019 which is the first space-based experiment for the program. The Mini-EUSO instrument consists of a 25 cm refractive optics and the photo-detector module with the 2304-pixel array of the multi-anode photomultiplier tubes. On the nadir-looking window of the ISS, the instrument is capable of continuously monitoring a ~300 km x 300 km area. In the present work, we report the preliminary result of the measurement of the UV light in the nighttime Earth using the Mini-EUSO data downlinked to the ground. We mapped UV light distribution both locally and globally below the ISS obit. Simulations were also made to characterize the instrument response to diffuse background light. We discuss the impact of such light on space-based UHECR observations and the Mini-EUSO science objectives

    Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors

    Get PDF
    Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as POEMMA and EUSO-SPB2, will be able to detect upward-moving extensive air showers induced by decaying tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. We calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources
    corecore