190 research outputs found

    Selection for biparental inheritance of mitochondria under hybridization and mitonuclear fitness interactions

    Get PDF
    Uniparental inheritance (UPI) of mitochondria predominates over biparental inheritance (BPI) in most eukaryotes. However, examples of BPI of mitochondria, or paternal leakage, are becoming increasingly prevalent. Most reported cases of BPI occur in hybrids of distantly related sub-populations. It is thought that BPI in these cases is maladaptive; caused by a failure of female or zygotic autophagy machinery to recognize divergent male-mitochondrial DNA ‘tags’. Yet recent theory has put forward examples in which BPI can evolve under adaptive selection, and empirical studies across numerous metazoan taxa have demonstrated outbreeding depression in hybrids attributable to disruption of population-specific mitochondrial and nuclear genotypes (mitonuclear mismatch). Based on these developments, we hypothesize that BPI may be favoured by selection in hybridizing populations when fitness is shaped by mitonuclear interactions. We test this idea using a deterministic, simulation-based population genetic model and demonstrate that BPI is favoured over strict UPI under moderate levels of gene flow typical of hybridizing populations. Our model suggests that BPI may be stable, rather than a transient phenomenon, in hybridizing populations.publishedVersio

    Mito-nuclear interactions as drivers of gene movement on and off the X-chromosome

    Get PDF
    Background: Mito-nuclear gene interactions regulate energy conversion, and are fundamental to eukaryotes. Generally, mito-nuclear coadaptation would be most efficient if the interacting nuclear genes were X-linked, because this maximizes the probability of favorable mito-nuclear allelic combinations co-transmitting across generations. Thus, under a coadaptation (CA) hypothesis, nuclear genes essential for mitochondrial function might be under selection to relocate to the X-chromosome. However, maternal inheritance predisposes the mitochondrial DNA (mtDNA) to accumulate variation that, while male-harming, is benign to females. Numerous nuclear genes were recently reported in Drosophila melanogaster, which exhibit male-specific patterns of differential expression when placed alongside different mtDNA haplotypes, suggesting that nuclear genes are sensitive to an underlying male-specific mitochondrial mutation load. These genes are thus candidates for involvement in mito-nuclear interactions driven by sexual conflict (SC), and selection might have moved them off the X-chromosome to facilitate an optimal evolutionary counter-response, through males, to the presence of male-harming mtDNA mutations. Furthermore, the presence of male-harming mtDNA mutations could exert selection for modifiers on the Y-chromosome, thus placing these mito-sensitive nuclear genes at the center of an evolutionary tug-of-war between mitochondrion and Y-chromosome. We test these hypotheses by examining the chromosomal distributions of three distinct sets of mitochondrial-interacting nuclear genes in D. melanogaster; the first is a list of genes with mitochondrial annotations by Gene Ontologies, the second is a list comprising the core evolutionary-conserved mitochondrial proteome, and the third is a list of genes involved in male-specific responses to maternally-inherited mitochondrial variation and which might be putative targets of Y-chromosomal regulation. Results: Genes with mitochondrial annotations and genes representing the mitochondrial proteome do not exhibit statistically-significant biases in chromosomal representation. However, genes exhibiting sex-specific sensitivity to mtDNA are under-represented on the X-chromosome, over-represented among genes known to be sensitive to Y-chromosomal variation, and among genes previously associated with male fitness, but under-represented among genes associated with direct sexual antagonism. Conclusions: Our results are consistent with the SC hypothesis, suggesting that mitochondrial mutational pressure selects for gene movement off-the-X, hence enabling mito-nuclear coadaptation to proceed along trajectories that result in optimized fitness in both sexes

    Antidepressant exposure causes a nonmonotonic reduction in anxiety-related behaviour in female mosquitofish

    Get PDF
    Worldwide, biologically active pharmaceuticals, such as psychoactive drugs, are routinely detected in aquatic ecosystems. In this regard, selective serotonin reuptake inhibitors (SSRIs), a class of antidepressant, are of major environmental concern. Through targeted action on evolutionarily conserved physiological pathways, SSRIs could alter ecologically important behaviours in exposed organisms. Here, using two field-realistic dosages (measured concentrations: 18 and 215 ng/L) of the SSRI fluoxetine (Prozac), we examined the effects of exposure on anxiety-related behaviours in wild-caught female mosquitofish, Gambusia holbrooki. Anxiety-related behaviour was assessed using a light/dark transition test, with the swimming activity of fish recorded under two alternating light conditions, complete darkness and bright light, with the shift in light condition used to induce an anxiety-like response. Fluoxetine exposure resulted in a nonmonotonic decrease in anxiety-related behaviour (i.e. nonlinear with dose), with fish in the low-fluoxetine treatment being less responsive to shifts in light condition compared to unexposed fish. There was no such difference between unexposed and high-exposed fish. Further, we detected a significant interaction between exposure treatment and fish weight on general swimming activity, suggesting the presence of a mass-specific effect of fluoxetine. More broadly, contaminant-induced disruption of animal behaviour—as documented here—could have wide-reaching effects on population-level fitness

    Experimental evidence that thermal selection shapes mitochondrial genome evolution

    Get PDF
    Mitochondria are essential organelles, found within eukaryotic cells, which contain their own DNA. Mitochondrial DNA (mtDNA) has traditionally been used in population genetic and biogeographic studies as a maternally-inherited and evolutionary-neutral genetic marker. However, it is now clear that polymorphisms within the mtDNA sequence are routinely non-neutral, and furthermore several studies have suggested that such mtDNA polymorphisms are also sensitive to thermal selection. These observations led to the formulation of the "mitochondrial climatic adaptation" hypothesis, for which all published evidence to date is correlational. Here, we use laboratory-based experimental evolution in the fruit fly, Drosophila melanogaster, to test whether thermal selection can shift population frequencies of two mtDNA haplogroups whose natural frequencies exhibit clinal associations with latitude along the Australian east-coast. We present experimental evidence that the thermal regime in which the laboratory populations were maintained drove changes in haplogroup frequencies across generations. Our results strengthen the emerging view that intra-specific mtDNA variants are sensitive to selection, and suggest spatial distributions of mtDNA variants in natural populations of metazoans might reflect adaptation to climatic environments rather than within-population coalescence and diffusion of selectively-neutral haplotypes across populations

    Sex-specific effects of mitochondrial haplotype on metabolic rate in Drosophila melanogaster support predictions of the Mother's Curse hypothesis

    Get PDF
    Evolutionary theory proposes that maternal inheritance of mitochondria will facilitate the accumulation of mitochondrial DNA (mtDNA) mutations that are harmful to males but benign or beneficial to females. Furthermore, mtDNA haplotypes sampled from across a given species distribution are expected to differ in the number and identity of these ‘male-harming’ mutations they accumulate. Consequently, it is predicted that the genetic variation which delineates distinct mtDNA haplotypes of a given species should confer larger phenotypic effects on males than females (reflecting mtDNA mutations that are male-harming, but female-benign), or sexually antagonistic effects (reflecting mutations that are male-harming, but female-benefitting). These predictions have received support from recent work examining mitochondrial haplotypic effects on adult life-history traits in Drosophila melanogaster. Here, we explore whether similar signatures of male-bias or sexual antagonism extend to a key physiological trait—metabolic rate. We measured the effects of mitochondrial haplotypes on the amount of carbon dioxide produced by individual flies, controlling for mass and activity, across 13 strains of D. melanogaster that differed only in their mtDNA haplotype. The effects of mtDNA haplotype on metabolic rate were larger in males than females. Furthermore, we observed a negative intersexual correlation across the haplotypes for metabolic rate. Finally, we uncovered a male-specific negative correlation, across haplotypes, between metabolic rate and longevity. These results are consistent with the hypothesis that maternal mitochondrial inheritance has led to the accumulation of a sex-specific genetic load within the mitochondrial genome, which affects metabolic rate and that may have consequences for the evolution of sex differences in life history

    HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Get PDF
    BACKGROUND: Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1) differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2) control of HIV-1 alternative splicing, which is essential for optimal viral replication. RESULTS: Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins) and inhibitory factors (members of the hnRNP family). While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. CONCLUSION: While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative viral pre-mRNA splicing were observed. These changes correlated with changes in Tat expression and virus production and could play an important role in viral persistence in macrophages. This mechanism could provide a novel target for control of infection in this critical cell type, which would be necessary for eventual eradication of the virus from infected individuals
    • …
    corecore