29 research outputs found

    Monoxide carbon frequency shift as a tool for the characterization of TiO2 surfaces: Insights from first principles spectroscopy

    Get PDF
    The adsorption and vibrational frequency of CO on defective and undefective titanium dioxide surfaces is examined applying first-principles molecular dynamics simulations. In particular, the vibrational frequencies are obtained beyond the harmonic approximation, through the time correlation functions of the atomic trajectories. In agreement with experiments, at low CO coverages we find an upshift in the vibration frequency with respect to the free CO molecule, of 45 and 35 cm-1 on the stoichiometric rutile (110) and anatase (101) faces, respectively. A band falling 8 cm-1 below the frequency corresponding to the perfect face is observed for the reduced rutile (110) surface in the low vacancy concentration limit, where the adsorption is favored on Ti4+ sites. At a higher density of defects, adsorption on Ti3+ sites becomes more stable, accompanied by a downshift in the stretching band. In the case of anatase (101), we analyze the effect of subsurface oxygen vacancies, which have been shown to be predominant in this material. Interestingly, we find that the adsorption of CO on five coordinate Ti atoms placed over subsurface vacancies is favored with respect to other Ti4+ sites (7.25 against 6.95 kcal/mol), exhibiting a vibrational redshift of 20 cm-1 . These results provide the basis to quantitatively assess the degree of reduction of rutile and anatase surfaces via IR spectroscopy, and at the same time allow for the assignment of characteristic bands in the CO spectra on TiO2 whose origin has remained ambiguous.Fil: Lustemberg, Pablo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Quimica Fisica; ArgentinaFil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de Los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Quimica Fisica; Argentin

    A unified electrostatic and cavitation model for first-principles molecular dynamics in solution

    Full text link
    The electrostatic continuum solvent model developed by Fattebert and Gygi is combined with a first-principles formulation of the cavitation energy based on a natural quantum-mechanical definition for the surface of a solute. Despite its simplicity, the cavitation contribution calculated by this approach is found to be in remarkable agreement with that obtained by more complex algorithms relying on a large set of parameters. Our model allows for very efficient Car-Parrinello simulations of finite or extended systems in solution, and demonstrates a level of accuracy as good as that of established quantum-chemistry continuum solvent methods. We apply this approach to the study of tetracyanoethylene dimers in dichloromethane, providing valuable structural and dynamical insights on the dimerization phenomenon

    Halide-mediated Modification of magnetism and electronic structure of α-Co (II) hydroxides: synthesis, characterization, and DFT+ U simulations

    Get PDF
    The present study introduces a comprehensive exploration in terms of physicochemical characterization and calculations based on density functional theory with Hubbard's correction (DFT+U) of the whole family of α-Co(II) hydroxyhalide (F, Cl, Br, I). These samples were synthesized at room temperature by employing a one-pot approach based on the epoxide route. A thorough characterization (powder X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis/mass spectroscopy, and magnetic and conductivity measurements) corroborated by simulation is presented that analyzes the structural, magnetic, and electronic aspects. Beyond the inherent tendency of intercalated anions to modify the interlayer distance, the halide's nature has a marked effect on several aspects. Such as the modulation of the CoOh to CoTd ratio, as well as the inherent tendency towards dehydration and irreversible decomposition. Whereas the magnetic behavior is strongly correlated with the CoTd amount reflected in the presence of glassy behavior with high magnetic disorder, the electrical properties depend mainly on the nature of the halide. The computed electronic structures suggest that the CoTd molar fraction exerts a minor effect on the inherent conductivity of the phases. However, the band gap of the solid turns out to be significantly dependent on the nature of the incorporated halide, governed by ligand to metal charge transfer, which minimizes the gap as the anionic radius becomes larger. Conductivity measurements of pressed pellets confirm this trend. To the best of our knowledge, this is the first report on the magnetic and electrical properties of α-Co(II) hydroxyhalides validated with in silico descriptions, opening the gate for the rational design of layered hydroxylated phases with tunable electrical, optical, and magnetic properties

    Molecular and Electronic Structure of Electroactive Self-Assembled Monolayers

    Get PDF
    Self-assembled monolayers (SAMs) containing electroactive functional groups are excellent model systems for the formation of electronic devices by self-assembly. In particular ferrocene-terminated alkanethiol SAMs have been extensively studied in the past. However, there are still open questions related with their electronic structure including the influence of the ferrocene group in the SAM-induced work function changes of the underlying metal. We have thus carried out a thorough experimental and theoretical investigation in order to determine the molecular and electronic structure of ferrocene-terminated alkanethiol SAMs on Au surfaces. In agreement with previous studies we found that the Fc-containing alkanethiol molecules adsorb forming a thiolate bond with the Au surface with a molecular geometry 30 degrees tilted with respect to the surface normal. Measured surface coverages indicate the formation of a compact monolayer. On the other hand, contrary with previous observations, we found that the ferrocene group has little influence on the observed work function decrease which is largely determined by the alkanethiol. Furthermore, the ferrocene moiety lies 14 Å above the metal surface covalently bonded to the alkanethiol SAM and its HOMO is located at -1.6 eV below the Fermi level. Our results provide new valuable insight into the molecular and electronic structure of electroactive SAMs which are of fundamental importance in the field of molecular electronics.Fil: Méndez de Leo, Lucila Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: de la Llave, Ezequiel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Williams, Federico Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin

    First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent

    Get PDF
    Continuum solvent models have become a standard technique in the context of electronic structure calculations, yet, no implementations have been reported capable to perform molecular dynamics at solid-liquid interfaces. We propose here such a continuum approach in a DFT framework, using plane-waves basis sets and periodic boundary conditions. Our work stems from a recent model designed for Car-Parrinello simulations of quantum solutes in a dielectric medium [J. Chem. Phys. 124, 74103 (2006)], for which the permittivity of the solvent is defined as a function of the electronic density of the solute. This strategy turns out to be inadequate for systems extended in two dimensions, by introducing new term in the Kohn-Sham potential which becomes unphysically large at the interfacial region, seriously affecting the convergence. If the dielectric medium is properly redefined as a function of the atomic coordinates, a good convergence is obtained and the constant of motion is conserved during the molecular dynamics simulations. Moreover, a significant gain in efficiency can be achieved if the simulation box is partitioned in two, solving the Poisson problem separately for the "dry" region using fast Fourier transforms, and for the solvated or "wet" region using a multigrid method. Eventually both solutions are combined in a self-consistent procedure, and in this way Car-Parrinello molecular dynamics simulations of solid-liquid interfaces can be performed at a very moderate computational cost. This scheme is employed to investigate the acid-base equilibrium at the TiO2-water interface.Comment: 36 pages, 7 figure

    Simulación de reactividad química en hemoproteínas

    No full text
    El trabajo de tesis puede subdividirse en dos incisos generales: el desarrollo de técnicas de simulación computacional orientadas al tratamiento de los efectos del entorno en sistemas moleculares de gran tamaño, y la aplicación de estas y otras metodologías de cálculo a diversos problemas atenientes a la reactividad de las hemoproteínas. En relación con el primer ítem, se halla la implementación de un método híbrido que combina el cálculo de estructura electrónica con un campo de fuerzas clásico, introduciendo de manera autoconsistente en el hamiltoniano mecanocuántico el potencial electrostático proveniente de una distribución de cargas parciales. Esta clase de técnicas, denotada habitualmente con las siglas QM-MM (Quantum Mechanics-Molecular Mechanics), resulta útil para el estudio de los efectos del entorno, por ejemplo un solvente o una proteína. La implementación del método híbrido fue realizada sobre el programa SIESTA, un algoritmo de cómputo basado en la teoría de los funcionales de la densidad (DFT) que utiliza funciones de base numéricas y pseudopotenciales. En lo que respecta al segundo inciso, se realiza en primer término un estudio metodológico tendiente a evaluar la aptitud de los diferentes tratamientos mecanocuánticos para describir la configuración electrónica de las metaloporfirinas. Seguidamente la investigación se focaliza sobre tres problemas específicos: (i) inhibición del citocromo P450 por el óxido nítrico; (ii) relación entre la afinidad por el oxígeno molecular y las uniones hidrógeno en la cavidad distal de la hemoglobina; (iii) modulación del efecto trans negativo del NO en el sitio activo de diferentes hemoenzimas, y sus implicancias en la activación de la guanilato ciclasa. A través de estos ejemplos se realiza una lectura microscópica de la actividad de las hemoproteínas, de sus propiedades reactivas, y de la modulación que sobre el sitio activo ejerce el entorno. Se estudian los efectos de los residuos proximales y distales, y se caracterizan distintos aspectos energéticos, estructurales y electrónicos que contribuyen a la interpretación de observaciones experimentales

    Simulación de reactividad química en hemoproteínas

    No full text
    El trabajo de tesis puede subdividirse en dos incisos generales: el desarrollo de técnicas de simulación computacional orientadas al tratamiento de los efectos del entorno en sistemas moleculares de gran tamaño, y la aplicación de estas y otras metodologías de cálculo a diversos problemas atenientes a la reactividad de las hemoproteínas. En relación con el primer ítem, se halla la implementación de un método híbrido que combina el cálculo de estructura electrónica con un campo de fuerzas clásico, introduciendo de manera autoconsistente en el hamiltoniano mecanocuántico el potencial electrostático proveniente de una distribución de cargas parciales. Esta clase de técnicas, denotada habitualmente con las siglas QM-MM (Quantum Mechanics-Molecular Mechanics), resulta útil para el estudio de los efectos del entorno, por ejemplo un solvente o una proteína. La implementación del método híbrido fue realizada sobre el programa SIESTA, un algoritmo de cómputo basado en la teoría de los funcionales de la densidad (DFT) que utiliza funciones de base numéricas y pseudopotenciales. En lo que respecta al segundo inciso, se realiza en primer término un estudio metodológico tendiente a evaluar la aptitud de los diferentes tratamientos mecanocuánticos para describir la configuración electrónica de las metaloporfirinas. Seguidamente la investigación se focaliza sobre tres problemas específicos: (i) inhibición del citocromo P450 por el óxido nítrico; (ii) relación entre la afinidad por el oxígeno molecular y las uniones hidrógeno en la cavidad distal de la hemoglobina; (iii) modulación del efecto trans negativo del NO en el sitio activo de diferentes hemoenzimas, y sus implicancias en la activación de la guanilato ciclasa. A través de estos ejemplos se realiza una lectura microscópica de la actividad de las hemoproteínas, de sus propiedades reactivas, y de la modulación que sobre el sitio activo ejerce el entorno. Se estudian los efectos de los residuos proximales y distales, y se caracterizan distintos aspectos energéticos, estructurales y electrónicos que contribuyen a la interpretación de observaciones experimentales.This thesis has two main goals: the development of computer simulation schemes to model environment effects in large systems and the application of these techniques to the investigation of chemical reactivity in heme proteins. Regarding the first goal, we have implemented a hybrid methodology combining an electronic structure calculation with a classical force field, including the electrostatic effects of the classical subsystem self-consistently in the Hamiltonian of the quantum subsystem. This kind of techniques, known usually as QM-MM (Quantum Mechanics- Molecular Mechanics), are specially useful to model environment effects in solution and in proteins. We have employed the SIESTA pseudopotential numerical basis set implementation of density functional theory (DFT) to describe the quantum subsystem, due to its computational performance. The implemented computational schemes have been used to investigate the following problems: (i) inhibition of cytochrome P450 by nitric oxide; (ii) role of hydrogen bonding in oxygen affinity of hemoglobins; (iii) modulation of nitric oxide negative trans effect in the active site in different heme proteins and its connection with the activation of guanylate cyclase. Through these examples, we have tried to provide a microscopic insight of the role of the environment on the chemical reactivity of heme proteins. We have investigated the effects of the distal and proximal residues, characterizing structural and energetical parameters which contribute to the interpretation of experimental results.Fil:Scherlis Perel, Damián Ariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    π-Stacking in Charged Thiophene Oligomers

    No full text

    Hydrogen Bonding and O 2

    No full text
    corecore