11 research outputs found

    Actividad antifúngica del aceite esencial de cinco especies de Juniperus de Argentina

    Get PDF
    The chemical composition of the leaf oils of five Juniperus species (Juniperus sabina L., Juniperus communis Lam., Juniperus scopulorum Sarg., Juniperus virginiana L., Juniperus chinensis L., Cupressaceae) was determined by co-chromatography with authentic samples, GC-MS and Kováts retention indices. Sabinene was the most abundant component in the oils of Juniperus from western Patagonia Argentina. However, limonene and germacrene B constituted 25.1% and 11.5% of the oil of J. sabina. J. virginiana showed high concentration of alpha-humulene and limonene (31.4 and 15.9% respectively), while isobornyl acetate and germacrene B were also the main compounds of J. chinensis. Essential oils extracted of Juniperus were evaluated in vitro for their efficacy against Fusarium verticillioides, Aspergillus flavus, Aspergillus parasiticus, Candida albicans and Rhodotorula infection. Candida albicans was not inhibited for the essential oils of Juniperus. However, F. verticillioides, A. flavus, A. parasiticus and Rhodotorula were inhibited for these oils.La composición de los aceites esenciales de la hoja de cinco especies de Juniperus (Juniperus sabina L., Juniperus communis Lam., Juniperus scopulorum Sarg., Juniperus virginiana L., Juniperus chinensis L., Cupressaceae), se determinó mediante una co-cromatografía con muestras auténticas de dos columnas de diferente polaridad, CG-EM y los índices de retención de Kovats. El sabineno fue el componente más abundante en los aceites de Juniperus del oeste de la Patagonia Argentina. Sin embargo, el limoneno y el germacreno B son otros componentes importantes del aceite esencial de J. sabina con el 25,1% y 11,5% respectivamente. En J. virginiana el alfa-humuleno y el limoneno (con el 31,4% y 15.9% respectivamente) mostraron ser también importantes, mientras que el acetato de isobornilo y el germacreno B fueron también los principales componentes de la J. chinensis. Los aceites esenciales extraídos de Juniperus se evaluaron in vitro para determinar su eficacia contra Fusarium verticillioides, Aspergillus flavus, Aspergillus parasiticus, Candida albicans y Rhodotorula. Candida albicans no se inhibió por la acción de los aceites esenciales de Juniperus. Sin embargo, F. verticillioides, A. flavus, A. parasiticus y Rhodotorula fueron inhibidos

    Effect of Selected Volatiles on Two Stored Pests: The Fungus Fusarium verticillioides and the Maize Weevil Sithophilus zeamais

    Get PDF
    New agronomic practices and technology enabled Argentina a larger production of cereal grains, reaching a harvest yield of 26.5 million metric tons of maize, of which, about 40% was exported. However, much of the maize production is lost annually by the attack of fungi and insects (2.6 million tons). In this study, the antifungal effect of selected volatiles on Fusarium verticillioides, its mycotoxin production, and the repellent and insecticidal activities against the weevill Sithophilus zeamais, an insect vector of F. verticillioides, were evaluated. The compounds tested were (2E)-2-hexenal, (2E)-2-nonenal,(2E,6Z)-2,6-nonadienal, 1-pentanol, 1-hexanol, 1-butanol, 3-methyl-1-butanol, pentanal, 2-decanone, and 3-decanone, which occur in the blend of volatile compounds emitted by various cereal grains. The most active antifungals were the aldehydes (2E)-2-nonenal, (2E)-2-hexenal, and (2E,6Z)-2,6-nonadienal (minimum inhibitory concentration values of <0.03, 0.06, and 0.06 mM,respectively). The occurrence of fumonisin B1 also was prevented because these compounds completely inhibited fungal growth.The best insecticidal fumigant activities against the maize weevil were shown by 2-decanone and 3-decanone (lethal concentration ≤ 54.6 μL/L (<0.28 mM)). Although, all tested compounds showed repellent activity against S. zeamais at a concentration of 4 μL/L, (2E,6Z)-2,6-nonadienal was the most active repellent compound. These results demonstrate the potential of (2E,6Z)-2,6-nonadienal to be used as a natural alternative to synthetic pesticides on F. verticillioides and S. zeamais.Fil: Zunino, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Herrera, Jimena María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); ArgentinaFil: Pizzolitto, Romina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Rubinstein, Héctor Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones En Bioquímica Clínica E Inmunología; Argentina; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Zygadlo, Julio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Dambolena, Jose Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba; Argentin

    Population Genomics Provide Insights into the Global Genetic Structure of \u3ci\u3eColletotrichum graminicola\u3c/i\u3e, the Causal Agent of Maize Anthracnose

    Get PDF
    Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and wholegenome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure

    Population Genomics Provide Insights into the Global Genetic Structure of Colletotrichum graminicola, the Causal Agent of Maize Anthracnose

    Get PDF
    Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure. IMPORTANCE Plant pathogens cause significant reductions in yield and crop quality and cause enormous economic losses worldwide. Reducing these losses provides an obvious strategy to increase food production without further degrading natural ecosystems; however, this requires knowledge of the biology and evolution of the pathogens in agroecosystems. We employed a population genomics approach to investigate the genetic diversity and reproductive biology of the maize anthracnose pathogen (Colletotrichum graminicola) in 14 countries. We found that the populations are correlated with their geographical origin and that migration between countries is ongoing, possibly caused by the movement of infected plant material. This result has direct implications for disease management because migration can cause the movement of more virulent and/or fungicide-resistant genotypes. We conclude that genetic recombination is frequent (in contrast to the traditional view of C. graminicola being mainly asexual), which strongly impacts control measures and breeding programs aimed at controlling this disease.This research was supported by grants AGL2015-66362-R, RTI2018-093611-B-100, and PID2021-125349NB-100, funded by the Ministry of Science and Innovation (MCIN) of Spain AEI/10.13039/501100011033; and by grant SA165U13 funded by the Junta de Castilla y Léon. F.R. was supported by grant FJC2020-043351-I financed by MCIN/AEI /10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. R.B. was supported by the postdoctoral program of USAL (Program II). F.B.C.-F. was supported by grant BES-2016-078373, funded by MCIN/AEI/10.13039/501100011033. S.B. was supported by a fellowship program from the regional government of Castilla y León. W.B. was supported by a productivity fellowship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 307855/2019-8). Genome sequencing was funded by the UNC Microbiome Core, which is funded in part by the Center for Gastrointestinal Biology and Disease (CGIBD P30 DK034987) and the UNC Nutrition Obesity Research Center (NORC P30 DK056350). P.D.E. was partially supported by the USDA National Institute of Food and Federal Appropriations under Project PEN04660 and accession no. 1016474.Peer reviewe

    Can Essential Oils Be a Natural Alternative for the Control of <i>Spodoptera frugiperda</i>? A Review of Toxicity Methods and Their Modes of Action

    No full text
    Spodoptera frugiperda is a major pest of maize crops. The application of synthetic insecticides and the use of Bt maize varieties are the principal strategies used for its control. However, due to the development of pesticide resistance and the negative impact of insecticides on the environment, natural alternatives are constantly being searched for. Accordingly, the objective of this review was to evaluate the use of essential oils (EOs) as natural alternatives for controlling S. frugiperda. This review article covers the composition of EOs, methods used for the evaluation of EO toxicity, EO effects, and their mode of action. Although the EOs of Ocimum basilicum, Piper marginatum, and Lippia alba are the most frequently used, Ageratum conyzoides, P. septuplinervium. O. gratissimum and Siparuna guianensis were shown to be the most effective. As the principal components of these EOs vary, then their mode of action on the pest could be different. The results of our analysis allowed us to evaluate and compare the potential of certain EOs for the control of this insect. In order to obtain comparable results when evaluating the toxicity of EOs on S. frugiperda, it is important that methodological issues are taken into account

    Ecological interactions affect the bioactivity of medicinal plants

    No full text
    Abstract Essential oils produced by medicinal plants possess important bioactive properties (antibacterial, antioxidant) of high value for human society. Pollination and herbivory can modify the chemical defences of plants and therefore they may influence the bioactivity of essential oils. However, the effect of ecological interactions on plant bioactivity has not yet been evaluated. We tested the hypothesis that cross-pollination and simulated herbivory modify the chemical composition of essential oils, improving the bioactive properties of the medicinal plant Lepechinia floribunda (Lamiaceae). Through controlled experiments, we showed that essential oils from the outcrossed plant progeny had a higher relative abundance of oxygenated terpenes and it almost doubled the bacteriostatic effect on Staphylococcus aureus, compared to inbred progeny (i.e., progeny produced in absence of pollinators). Herbivory affected negatively and positively the production of rare compounds in inbred and outcrossed plants, respectively, but its effects on bioactivity still remain unknown. We show for the first time that by mediating cross-pollination (indirect ecosystem service), pollinators can improve ecosystem services linked to the biological activity of plant’s essential oils. We stress the importance of the qualitative component of pollination (self, cross); an aspect usually neglected in studies of pollination services

    Inhibitory Effect of Natural Phenolic Compounds on Aspergillus parasiticus Growth

    Get PDF
    Considering the impact of Aspergillus species on crops, it appears to be highly desirable to apply strategies to prevent their growth, as well as to eliminate or reduce their presence in food products. For this reason, the aims of this investigation were to evaluate the effects of ten natural phenolic compounds on the Aspergillus parasiticus growth and to determine which physicochemical properties are involved in the antifungal activity. According to the results of minimum inhibitory concentration (MIC) values of the individual compounds, isoeugenol, carvacrol, and thymol were the most active phenolic components (1.26 mM, 1.47 mM, and 1.50 mM, resp.), followed by eugenol (2.23 mM). On the other hand, creosol, p-cresol, o-cresol, m-cresol, vanillin, and phenol had no effects on fungal development. Logarithm of the octanol/water partition coefficient (log P), refractivity index (RI), and molar volume (MV) were demonstrated to be the descriptors that best explained the antifungal activity correlated to lipophilicity, reactivity of the components, and steric aspect. These findings make an important contribution to the search for new compounds with antifungal activity
    corecore