13 research outputs found

    EKSTRAKSI ANTOSIANIN BUNGA DADAP MERAH MENGGUNAKAN METODE MAE (MICROWAVE ASSISTED EXTRACTION)

    Get PDF
    Antosianin merupakan sumber bahan pewarna alami, di mana selain karotenoid, klorofil, dan flavonoid yang dapat dimanfaatkan untuk mendukung performa Dye Sensitized Solar Cells (DSSC) atau sel surya peka warna. Ekstraksi dengan metode Microwave Assisted Extraction (MAE) meningkatkan hasil dan laju reaksi. Penelitian menggunakan metode deskriptif dengan variabel penelitian daya microwave yang bertujuan untuk mengetahui pengaruh daya microwave dalam proses ekstraksi antosanin bunga dadap merah. Hasil penelitian menunjukkan bahwa gelombang mikro dalam microwave mampu mempercepat proses ekstraksi dibutuhkan 12-15 menit dengan daya 300 W, 450 W dan 600 W. Hasil menunjukkan bahwa  total antosianin yang dihasilkan secara berurutan 9,518 mg/L (menit ke-12 daya, 300W); 2,755 mg/L (menit ke-15, daya 450W)  dan 2,839 mg/L (menit ke-12, daya 600W). Ekstraksi antosianin dadap merah menggunakan mikrowave lebih cepat 10 kali dan lebih besar yield 3-10 kali daripada konvensional 180 menit (0,8350 mg/L

    Karakterisasi Bio-Oil dari Hasil Pirolisis terhadap Biomasa

    Get PDF
    The utilization of biomass as a source of new and renewable energy is being carried out. One of the technologies to convert biomass as an energy source is pyrolysis which is converting biomass into more valuable products, such as bio-oil. Bio-oil is a liquid which produced by steam condensation process from the pyrolysis of coconut shell. The composition of biomass such as hemicellulose, cellulose and lignin will be oxidized to phenol, alcohol, and acetate acid as the main content of the bio-oil. The experiments typically occurred at the atmospheric pressure in a laboratory furnace at temperatures ranging from 300 to 550oC with a heating rate of 10oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the bio-oil components. The obtained bio-oil has the viscosity of 1.185 cp (coconut husk), 1.133 cp (coffee husk), 1,094 cp (sawdust); the density of 1.008 g/cm3 (coconut husk), 0.994 g/cm3 (coffee husk), 0.98 g/cm3 (sawdust);the caloric value of 3500kcal/kg (coconut husk),4200 kcal/kg (coffee husk), 1500 kcal/kg (sawdust); and the moisture content of 16% (coconut husk),31% (coffee husk),13% (sawdust). The analysis of GC-MS result showed that the bio-oil from coconut husk contained ethyl ester (37.60%), phenol (40.01%); bio-oil from coffee husk contained acetic acid (26%), phenol (34%); and bio-oil from sawdust contained acetaldehyde (26.15%), acetic acid (20.90%)

    Karakterisasi Bio-Oil dari Hasil Pirolisis terhadap Biomasa

    Get PDF
    The utilization of biomass as a source of new and renewable energy is being carried out. One of the technologies to convert biomass as an energy source is pyrolysis which is converting biomass into more valuable products, such as bio-oil. Bio-oil is a liquid which produced by steam condensation process from the pyrolysis of coconut shell. The composition of biomass such as hemicellulose, cellulose and lignin will be oxidized to phenol, alcohol, and acetate acid as the main content of the bio-oil. The experiments typically occurred at the atmospheric pressure in a laboratory furnace at temperatures ranging from 300 to 550oC with a heating rate of 10oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the bio-oil components. The obtained bio-oil has the viscosity of 1.185 cp (coconut husk), 1.133 cp (coffee husk), 1,094 cp (sawdust); the density of 1.008 g/cm3 (coconut husk), 0.994 g/cm3 (coffee husk), 0.98 g/cm3 (sawdust);the caloric value of 3500kcal/kg (coconut husk),4200 kcal/kg (coffee husk), 1500 kcal/kg (sawdust); and the moisture content of 16% (coconut husk),31% (coffee husk),13% (sawdust). The analysis of GC-MS result showed that the bio-oil from coconut husk contained ethyl ester (37.60%), phenol (40.01%); bio-oil from coffee husk contained acetic acid (26%), phenol (34%); and bio-oil from sawdust contained acetaldehyde (26.15%), acetic acid (20.90%)

    Pemungutan Minyak Atsiri Mawar (Rose Oil) Dengan Metode Maserasi

    Full text link
    Minyak mawar merupakan salah satu produk minyak bunga yang memungkinkan diproduksi di Indonesia dengan kualitas ekspor. Manfaat dari minyak mawar adalah untuk parfum, kosmestik, dan obat-obatan. Minyak mawar dapat diproduksi dengan menggunakan metode diantaranya maserasi. Tujuan penelitian ini adalah mengetahui rendemen minyak atsiri mawar merah (Rosa damascena) dan komponen minyak atsiri yang terambil dengan etanol dan n-heksana. Bahan baku yang digunakan berupa mahkota bunga mawar sebanyak 50 gram yang dipotong kecil-kecil, kemudian direndam dalam pelarut dengan perbandingan 1:3. Pelarut yang digunakan yaitu etanol dan n-heksana. Proses maserasi dilakukan dengan pengadukan selama 1 menit secara manual pada suhu ruang dan didiamkan selama 12 jam di tempat tertutup dan gelap (tanpa terkena cahaya). Hasil maserasi berupa ekstrak mawar dipisahkan dengan cara penyaringan dan pemerasan bunga. Filtrat yang mengandung minyak bunga mawar dievaporasi dengan  rotary vacuum evaporator. Maserasi menggunakan etanol pada suhu 60ºC selama 20 menit, sedangkan maserasi menggunakan n-heksana pada suhu 55 ºC selama 10 menit. Minyak atsiri hasil maserasi bunga mawar merah dilakukan uji GC-MS. Komponen utama minyak atsiri dari bunga mawar dengan pelarut etanol dan pelarut n-heksana secara berurutan adalah phenyl ethyl alcohol (2,73%) dan (31,69%). Rendemen hasil maserasi minyak bunga mawar dengan pelarut etanol adalah 8,76%, sedangkan pelarut n-heksana menghasilkan 0,34 %. Rose oil is one of the flower oil products which is potentially produced in Indonesia with export quality. The uses of rose oils are for perfume, cosmestics, and medicine. Rose oil can be produced using methods such as maceration. The purpose of this reasearch was to determine the yield of essential oil of red roses (Rosa damascena) and the essential oil components taken using ethanol and n-hexane. The raw material used was 50 grams of red roses which subsequently soaked into solvent with ratio of 1:3. The solvent used were ethanol and n-hexane. Maceration process was carried out by manually stirring for 1 minute at room temperature and kept for 12 hours in a closed and dark (without exposure to light) place. Maceration result in the form of rose extract was separated by filtration and extortion of flowers. The filtrate containing rose oil was evaporated using rotary vacuum evaporator. Maceration temperature using ethanol was 60 ºC for 20 minutes, while using n-hexane was 55ºC for 10 minutes. The essential oils produced from maceration process of red roses was analysed using GC-MS. The main components of the essential oil of roses extracted using solvents of ethanol and n-hexane sequentially were phenyl ethyl alcohol (2.73%) and (31.69%). The yield of the rose oil maceration with ethanol was 8.76%, while the solvent of n-hexane yield 0.34%

    Bioethanol Production from Oil Palm Empty Fruit Bunches Using Saccharomyces cerevisiae Immobilized on Sodium Alginate Beads

    Get PDF
    Bioethanol is an environmentally benign renewable energy commonly obtained from glucose fermentation using Saccharomyces cerevisiae. The purposes of this study are to investigate the effects of time, temperature, pH, immobilized yeast cell loading, beads reuse during ethanol production through batch fermentation of glucose derived from oil palm empty fruit bunches by S. cerevisiae immobilized on Na-alginate beads and to compare the performance of fermentation using immobilized yeast cells and that of using a free cell system. The results revealed that time, temperature, pH, yeast mass and beads reuse significantly affected the ethanol and final glucose concentrations. As expected, a maximum ethanol concentration was obtained from fermentation using immobilized yeast cells at 30 °C, pH 5, and immobilized yeast cell loading of 0.75 g for 48 hours. However, fermentation with a free cell system at the same conditions resulted in lower ethanol yield. The highest ethanol concentration of 88.125 g/L with a productivity of 1.84 g/L·h was achieved from the second cycle fermentation using of immobilized cells beads. The results suggest that an immobilized cell system exhibits great potential applications for improved ethanol production due to its ability to sustain the stability of cell activity, reduce contamination tendency, and protect yeast cells from any possible inhibitions

    Pengaruh Perbedaan Pelarut Asam Pada Ekstraksi Antosianin Bunga Dadap Merah (Erythrina Crista-Galli) Dengan Metode Microwave Assisted Extraction

    Get PDF
    Penggunaan pewarna alami pada berbagai bidang teknologi sekarang ini dapat menggunakan tanaman karena dapat diperbaharui, bunga dadap merah menjadi salah satu sumber pigmen antosianin yang banyak ditemukan di Indonesia. Penelitian ini bertujuan untuk menentukan pelarut asam terbaik dalam proses ekstraksi ditinjau dari kadar total antosianinnya. Proses ekstraksi dadap merah dilakukan dengan metode gelombang mikro menggunakan microwave. Daya microwave yang digunakan sebesar 600 W. Ekstraksi antosianin dilakukan dengan perbedaan pelarut yaitu etanol yang diasamkan menggunakan 4% asam sitrat, 4% asam tartarat dan 1% HCl. Rasio pelarut yang digunakan sebesar 1:25 dan waktu selama 3, 6, 9, 12 dan 15 menit. Kadar antosianin tertinggi yang diperoleh masing-masing pelarut dilakukan uji karakteristik intensitas warnanya. Hasil ekstraksi antosianin tertinggi menggunakan 4% asam sitrat diperoleh sebesar 3,673754647 mg/L pada waktu 12 menit. Antosianin tertinggi menggunakan 4% asam tartarat diperoleh sebesar 8,098959108 mg/L pada waktu 3 menit. Antosianin tertinggi yang diperoleh menggunakan 1% HCl sebesar 28,52169517 mg/L pada waktu ekstraksi 12 menit. Intensitas warna antosianin tertinggi diperoleh pada pelarut etanol yang diasamkan menggunakan 1% HCl. Hasil penelitian ini menunjukkan bahwa ekstraksi antosianin terbaik adalah ekstraksi menggunakan pelarut etanol yang diasamkan dengan 1% HCl

    Essential Oil Extraction of Fennel Seed (Foeniculum vulgare) Using Steam Distillation

    Get PDF
    Indonesia is a potential country in developing essential oils which is each part of the plants produce essential oils such as leaf, seed, fruit, and root. One of the potential plants is fennel. Fennel oil distillation used fennel seed from Cepogo District, Boyolali Regency. The characteristics of the seed are; the color is black and the length is 0,2 centimeters. The condition operation to exctract of the fennel seed are 1 atm and 7,5 hours. The calculation of the time started when the first fennel oil dropped into the decanter. It finished when the fennel oil was not dropped anymore. The color is bright and muddy. The last process is add 1% (m/m) Na2SO4 anhidrous into fennel oil to absorp remain water in it. The distillation process produce fennel oil102,125 grams. Sample of fennel oil tested which are density test, solubility on 90% alcohol, GC-MS test, and AAS test. The result shows that fennel oil from the fennel seed is 2,0425%. The tested samples contain the brightest and the muddies sample. The density of 0,9500 and 0,949 g/cc respectively that is not fulfill to the Food Chemical Codex (FCC). Samples solubility in 90% alcohol (1:3) is fulfill to the the Food Chemical Codex (FCC). Three main components of the brightest sample are anethole (47,51%), estragole (22,41%), and α-fensone (21,92%) while the muddiest sample’s components are anethole (52,38%), estragole (21,37%),and α-fensone (15,74%). The AAS test shows that fennel oil contains 65,1473 ppm which does not fulfill the Indonesia National Standart No. 06-2385-2006(Nilam essential oil)

    PENGOLAHAN BIJI MAHONI (Swietenia Macrophylla King) SEBAGAI BAHAN BAKU ALTERNATIF BIODIESEL

    No full text
    Peningkatan kebutuhan minyak bumi yang terus menerus akan mengakibatkan kelangkaan bahan bakar minyak. Sumber energi alternatif yang ramah lingkungan, salah satunya adalah biodiesel. Bahan baku potensial untuk memproduksi biodiesel yang tidak bersaing dengan bahan baku pangan contohnya adalah biji mahoni (swietenia macrophylla king). Tahapan yang diperlukan dalam percobaan biodiesel adalah proses pengambilan minyak biji mahoni dengan proses penyangraian, degumming, dan proses transesterifikasi. Alat yang diperlukan dalam pembuatan biodiesel yaitu: labu alas bulat dilengkapi kondensor, gelas ukur, pengaduk magnetik, alat-alat gelas lab, dan lain sebagainya. Proses pengambilan minyak dilakukan dengan penyangraian yang hasilnya di degumming dengan asam fosfat 5% b/b pada suhu 80ºC selama 15 menit. Degumming bertujuan untuk menghilangkan getah, lendir, protein, resin dan gum. Proses kedua yaitu transesterifikasi dengan metanol 1:6 (minyak dan mtanol) dengan KOH 0,1 N pada suhu 60ºC selama 1 jam. Setelah diperoleh metil ester, dilakukan proses pencucian atau penetralan metil ester pada suhu pemanasan 104ºC untuk menghilangkan kadar airnya. Dari hasil percobaan diperoleh rendemen minyak sebesar 86,92%, uji densitas 874,08 kg/m³, viskositas 3,07 mm2/s, dan bilangan asam 0,5601 mg KOH/g. Metil ester yang dihasilkan telah sesuai dengan SNI-04-7182-2006. An increased demand of the fossil fuel would lead to scarcity of the fossil fuel in the future. An alternative of environmentally friendly energy sources is biodiesel. It is accounted that the resources for producing biodiesel should not compete with food raw materials, such as mahogany grain, (swietenia macrophylla king). The necessary steps in the experiment of producing biodiesel are process of taking the mahogany seed-oil by using roasting method, degumming, and transesterification process. The required equipments for producing biodiesel were round-bottom flask equipped with condenser, measuring cylinder, magnetic stirrer, other lab-glassware, etc. Firstly, the process of taking the oil from mahogany seed was carried by using roasting method; then the result was degummed by using 5wt% of Phosphate acid at 80 oC for 15 minutes. The degumming process was aimed to remove sap, mucus, proteins, resin and gum. The second step was transesterification process using methanol 1:6 (oil and methanol) and 0.1N KOH solutions, which was carried out at 60 oC for 1 hour. Once the methyl ester was produced, the next steps were washing and neutralization of methyl ester at heating temperature of 104 oC to remove the water content in the methyl ester. The obtained yield from the experiments was 86.92%. The tested density, viscosity, and the acid value were 874.08 kg/m³, 3.07 mm2/s, and 0.5601 mg KOH/g, respectively. The produced Methyl ester is in accordance with SNI-04-7182-2006.</p

    PEMUNGUTAN MINYAK ATSIRI MAWAR (Rose Oil) DENGAN METODE MASERASI

    No full text
    Minyak mawar merupakan salah satu produk minyak bunga yang memungkinkan diproduksi di Indonesia dengan kualitas ekspor. Manfaat dari minyak mawar adalah untuk parfum, kosmestik, dan obat-obatan. Minyak mawar dapat diproduksi dengan menggunakan metode diantaranya maserasi. Tujuan penelitian ini adalah mengetahui rendemen minyak atsiri mawar merah (Rosa damascena) dan komponen minyak atsiri yang terambil dengan etanol dan n-heksana. Bahan baku yang digunakan berupa mahkota bunga mawar sebanyak 50 gram yang dipotong kecil-kecil, kemudian direndam dalam pelarut dengan perbandingan 1:3. Pelarut yang digunakan yaitu etanol dan n-heksana. Proses maserasi dilakukan dengan pengadukan selama 1 menit secara manual pada suhu ruang dan didiamkan selama 12 jam di tempat tertutup dan gelap (tanpa terkena cahaya). Hasil maserasi berupa ekstrak mawar dipisahkan dengan cara penyaringan dan pemerasan bunga. Filtrat yang mengandung minyak bunga mawar dievaporasi dengan  rotary vacuum evaporator. Maserasi menggunakan etanol pada suhu 60ºC selama 20 menit, sedangkan maserasi menggunakan n-heksana pada suhu 55 ºC selama 10 menit. Minyak atsiri hasil maserasi bunga mawar merah dilakukan uji GC-MS. Komponen utama minyak atsiri dari bunga mawar dengan pelarut etanol dan pelarut n-heksana secara berurutan adalah phenyl ethyl alcohol (2,73%) dan (31,69%). Rendemen hasil maserasi minyak bunga mawar dengan pelarut etanol adalah 8,76%, sedangkan pelarut n-heksana menghasilkan 0,34 %. Rose oil is one of the flower oil products which is potentially produced in Indonesia with export quality. The uses of rose oils are for perfume, cosmestics, and medicine. Rose oil can be produced using methods such as maceration. The purpose of this reasearch was to determine the yield of essential oil of red roses (Rosa damascena) and the essential oil components taken using ethanol and n-hexane. The raw material used was 50 grams of red roses which subsequently soaked into solvent with ratio of 1:3. The solvent used were ethanol and n-hexane. Maceration process was carried out by manually stirring for 1 minute at room temperature and kept for 12 hours in a closed and dark (without exposure to light) place. Maceration result in the form of rose extract was separated by filtration and extortion of flowers. The filtrate containing rose oil was evaporated using rotary vacuum evaporator. Maceration temperature using ethanol was 60 ºC for 20 minutes, while using n-hexane was 55ºC for 10 minutes. The essential oils produced from maceration process of red roses was analysed using GC-MS. The main components of the essential oil of roses extracted using solvents of ethanol and n-hexane sequentially were phenyl ethyl alcohol (2.73%) and (31.69%). The yield of the rose oil maceration with ethanol was 8.76%, while the solvent of n-hexane yield 0.34%.</p
    corecore