194 research outputs found

    EPidemiology Of Cardiogenic sHock in Scotland (EPOCHS):a multicentre, prospective observational study of the prevalence, management and outcomes of cardiogenic shock in Scotland

    Get PDF
    BackgroundDespite high rates of cardiovascular disease in Scotland, the prevalence and outcomes of patients with cardiogenic shock are unknown.MethodsWe undertook a prospective observational cohort study of consecutive patients with cardiogenic shock admitted to the intensive care unit (ICU) or coronary care unit at 13 hospitals in Scotland for a six-month period. Denominator data from the Scottish Intensive Care Society Audit Group were used to estimate ICU prevalence; data for coronary care units were unavailable. We undertook multivariable logistic regression to identify factors associated with in-hospital mortality.ResultsIn total, 247 patients with cardiogenic shock were included. After exclusion of coronary care unit admissions, this comprised 3.0% of all ICU admissions during the study period (95% confidence interval [CI] 2.6 to 3.5%). Aetiology was acute myocardial infarction (AMI) in 48%. The commonest vasoactive treatment was noradrenaline (56%) followed by adrenaline (46%) and dobutamine (40%). Mechanical circulatory support was used in 30%. Overall in-hospital mortality was 55%. After multivariable logistic regression, age (odds ratio [OR] 1.04, 95% CI 1.02 to 1.06), admission lactate (OR 1.10, 95% CI 1.05 to 1.19), Society for Cardiovascular Angiographic Intervention stage D or E at presentation (OR 2.16, 95% CI 1.10 to 4.29), and use of adrenaline (OR 2.73, 95% CI 1.40 to 5.40) were associated with mortality.ConclusionsIn Scotland the prevalence of cardiogenic shock was 3% of all ICU admissions; more than half died prior to discharge. There was significant variation in treatment approaches, particularly with respect to vasoactive support strategy. <br/

    Tackling bovine TB

    Get PDF
    On 18 December Defra revealed that during 2018, 32,601 badgers were killed, bringing the total number slaughtered under licence since 2013 to almost 67,000.1 ‘Effectiveness’ claims relate not to the impact on cattle TB, but rather to the ability of the contracted shooters to kill sufficient badgers to satisfy their licence requirements, which they can hardly fail to reach given that target numbers are ‘adjusted’ by Natural England part-way through the culls according to the contractors’ progress. Sixty per cent of the badgers have been killed by ‘controlled shooting’, a method rejected by both the government’s Independent Expert Panel2 and the BVA3 because of animal welfare concerns. During 2018 Natural England directly monitored just 89 (0.43 per cent) of controlled shooting events. It is deplorable that the chief veterinary officer (CVO) continues to support the roll-out of a policy that permits controlled shooting, when veterinary organisations have condemned the method on animal welfare grounds. It is particularly concerning that the CVO appears to have deflected responsibility for humaneness to Natural England’s chief scientist who, as far as we are aware, has no background in animal welfare science. It is also unacceptable for government to attribute reductions in herd bovine TB (bTB) incidents over the first four years of culling in the original ‘pilot’ cull zones to its badger culling policy.4 Independent analysis of this and more recent data from the Gloucestershire pilot cull zone5 indicate that new herd incidence is rising sharply, with 22 herd breakdowns in the 12 months to September 2017 (an increase of 29.4 per cent when compared to the 17 breakdowns reported by APHA for the previous 12 months). Analysis of the 2018 figures indicates that both incidence and prevalence are now rising even faster, with a further 24 herd breakdowns occurring between 1 January and 5 December 2018. To date, the government and its officials cite data that are two years out of date, but have declined to comment on this emerging evidence that, far from resulting in a substantial disease control benefit, badger culls may be leading to a sharp increase in bTB in cattle. Natural England’s chief scientist and the UK’s CVO continue to endorse a failing and inhumane policy, bringing their offices into serious disrepute. We urge them, and the BVA, to reconsider their support for further badger culling, and instead focus on the actual cause of bTB’s epidemic spread – a cattle skin test with a sensitivity of only 50 per cent,6,7 and the ongoing problems associated with cattle movements and on-farm biosecurity

    Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems

    Get PDF
    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts

    Mast Cells and Gastrointestinal Dysmotility in the Cystic Fibrosis Mouse

    Get PDF
    BACKGROUND: Cystic fibrosis (CF) has many effects on the gastrointestinal tract and a common problem in this disease is poor nutrition. In the CF mouse there is an innate immune response with a large influx of mast cells into the muscularis externa of the small intestine and gastrointestinal dysmotility. The aim of this study was to evaluate the potential role of mast cells in gastrointestinal dysmotility using the CF mouse (Cftr(tm1UNC), Cftr knockout). METHODOLOGY: Wild type (WT) and CF mice were treated for 3 weeks with mast cell stabilizing drugs (ketotifen, cromolyn, doxantrazole) or were treated acutely with a mast cell activator (compound 48/80). Gastrointestinal transit was measured using gavage of a fluorescent tracer. RESULTS: In CF mice gastric emptying at 20 min post-gavage did not differ from WT, but was significantly less than in WT at 90 min post-gavage. Gastric emptying was significantly increased in WT mice by doxantrazole, but none of the mast cell stabilizers had any significant effect on gastric emptying in CF mice. Mast cell activation significantly enhanced gastric emptying in WT mice but not in CF mice. Small intestinal transit was significantly less in CF mice as compared to WT. Of the mast cell stabilizers, only doxantrazole significantly affected small intestinal transit in WT mice and none had any effect in CF mice. Mast cell activation resulted in a small but significant increase in small intestinal transit in CF mice but not WT mice. CONCLUSIONS: The results indicate that mast cells are not involved in gastrointestinal dysmotility but their activation can stimulate small intestinal transit in cystic fibrosis

    RNAi Effector Diversity in Nematodes

    Get PDF
    While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i) Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (ds)RNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii) The Argonautes (AGOs) responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii) Secondary Argonautes (SAGOs) are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv) All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v) In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research genetic tool in nematodes

    Efficient in vitro RNA interference and immunofluorescence-based phenotype analysis in a human parasitic nematode, Brugia malayi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA interference (RNAi) is an efficient reverse genetics technique for investigating gene function in eukaryotes. The method has been widely used in model organisms, such as the free-living nematode <it>Caenorhabditis elegans</it>, where it has been deployed in genome-wide high throughput screens to identify genes involved in many cellular and developmental processes. However, RNAi techniques have not translated efficiently to animal parasitic nematodes that afflict humans, livestock and companion animals across the globe, creating a dependency on data tentatively inferred from <it>C. elegans</it>.</p> <p>Results</p> <p>We report improved and effective <it>in vitro </it>RNAi procedures we have developed using heterogeneous short interfering RNA (hsiRNA) mixtures that when coupled with optimized immunostaining techniques yield detailed analysis of cytological defects in the human parasitic nematode, <it>Brugia malayi</it>. The cellular disorganization observed in <it>B. malayi </it>embryos following RNAi targeting the genes encoding γ-tubulin, and the polarity determinant protein, PAR-1, faithfully phenocopy the known defects associated with gene silencing of their <it>C. elegans </it>orthologs. Targeting the <it>B. malayi </it>cell junction protein, AJM-1 gave a similar but more severe phenotype than that observed in <it>C. elegans</it>. Cellular phenotypes induced by our <it>in vitro </it>RNAi procedure can be observed by immunofluorescence in as little as one week.</p> <p>Conclusions</p> <p>We observed cytological defects following RNAi targeting all seven <it>B. malayi </it>transcripts tested and the phenotypes mirror those documented for orthologous genes in the model organism <it>C. elegans</it>. This highlights the reliability, effectiveness and specificity of our RNAi and immunostaining procedures. We anticipate that these techniques will be widely applicable to other important animal parasitic nematodes, which have hitherto been mostly refractory to such genetic analysis.</p

    Comparative antibacterial potential of selected aldehyde-based biocides and surfactants against planktonic Pseudomonas fluorescens

    Get PDF
    The antimicrobial efficacy of two aldehydebased biocides (glutaraldehyde, GTA, and orthophthalaldehyde, OPA) and two surfactants (cetyltrimethyl ammonium bromide, CTAB, and sodium dodecyl sulphate, SDS) was tested against planktonic Pseudomonas fluorescens. The antimicrobial effects were evaluated by respiratory activity as a measure of the oxygen uptake rate, adenosine triphosphate (ATP) release, outer membrane proteins (OMP) expression and cellular colour changes. The results were compared with the bacterial characteristics without chemical treatment. Tests in the presence of bovine serum albumin (BSA), in order to mimic a disinfection process in the real situation under dirty conditions, were performed according to the European Standard EN-1276. P. fluorescens was completely inactivated with OPA (minimum bactericidal concentration, MBC = 0.5 mM) and CTAB (MBC = 5 mM) and was resistant to GTA and SDS. Only CTAB promoted cellular disruption and consequent ATP release. The antimicrobial action of the chemicals tested was significantly reduced when BSA was introduced into the bacterial cultures, increasing markedly the MBC values. Additionally, the presence of BSA acted as a disruption protective agent when CTAB was applied and stimulated the bacterial respiratory activity when lower concentrations of SDS were tested. The OMP of the bacterial cells was affected by the application of both surfactants. OMP expression remained unaltered after biocide treatment. Bacterial colour change was noticed after treatment with biocides and surfactants. In summary, P. fluorescens was extremely resistant to GTA and SDS, with antimicrobial action being quenched markedly by the reaction with BSA.Instituto de Biotecnologia e Química Fina (IBQF).Fundação para a Ciência e a Tecnologia (FCT) - (Project CHEMBIO - POCI/BIO/61872/2004

    Identification of dissolved organic matter size components in freshwater and marine environments

    Get PDF
    Dissolved organic matter (DOM) in the transition zone from freshwater to marine systems was analyzed with a new approach for parameterizing the size distribution of organic compounds. We used size-exclusion chromatography for molecular size analysis and quantified colored DOM (CDOM) on samples from two coastal environments in the Baltic Sea (Roskilde Fjord, Denmark and Gulf of Gdansk, Poland). We applied a Gaussian decomposition method to identify peaks from the chromatograms, providing information beyond bulk size properties. This approach complements methods where DOM is separated into size classes with pre-defined filtering cutoffs, or methods where chromatograms are used only to infer average molecular weight. With this decomposition method, we extracted between three and five peaks from each chromatogram and clustered these into three size groups. To test the applicability of our method, we linked our decomposed peaks with salinity, a major environmental driver in the freshwater-marine continuum. Our results show that when moving from freshwater to low-salinity coastal waters, the observed steep decrease of apparent molecular weight is mostly due to loss of the high-molecular-weight fraction (HMW; >2 kDa) of CDOM. Furthermore, most of the CDOM absorbance in freshwater originates from HMW DOM, whereas the absorbing moieties are more equally distributed along the smaller size range (<2 kDa) in marine samples.Peer reviewe

    Depth refuge and the impacts of SCUBA spearfishing on coral reef fishes

    Get PDF
    In recent decades, spearfishing with SCUBA has emerged as an efficient method for targeting reef fish in deeper waters. However, deeper waters are increasingly recognised as a potential source of refuge that may help sustain fishery resources. We used a combination of historical catch data over a 20-year time period and fishery-independent surveys to investigate the effects of SCUBA spearfishing on coral reef fish populations in the southern Mariana Islands. Two jurisdictions were studied; Guam, where SCUBA spearfishing is practiced, and the nearby Commonwealth of Northern Mariana Islands (CNMI), where SCUBA spearfishing has been banned since 2003. Fishery-independent data were collected using baited remote underwater stereo-video systems (stereo-BRUVs) stratified by depth, marine protected area status and jurisdiction. Herbivores (primary consumers) dominated spearfishing catches, with parrotfish (scarines) and surgeonfish/unicornfish (acanthurids) the main groups harvested. However, the large, endangered humphead wrasse (Cheilinus undulatus) was the main species by weight landed by SCUBA spearfishers. SCUBA spearfishing was associated with declining size of scarines over time and catches shifting from a dominance of large parrotfishes to a mixed assemblage with increasing proportions of acanthurids. Comparisons between Guam and the nearby CNMI revealed differences in the assemblage of fished species and also greater size of scarines and acanthurids in deep water where SCUBA fishing is banned. These results suggest that SCUBA spearfishing impacts reef fish populations and that the restriction of this fishing method will ensure refuge for fish populations in deeper waters. We recommend a ban on SCUBA spearfishing to preserve or aid the recovery of large, functionally important coral reef species and to improve the sustainability of coral reef fisheries
    corecore