7 research outputs found

    The distribution of volatile elements during rocky planet formation

    Get PDF
    Core segregation and atmosphere formation are two of the major processes that redistribute the volatile elements—hydrogen (H), carbon (C), nitrogen (N), and sulfur (S)—in and around rocky planets during their formation. The volatile elements by definition accumulate in gaseous reservoirs and form atmospheres. However, under conditions of early planet formation, these elements can also behave as siderophiles (i.e., iron-loving) and become concentrated in core-forming metals. Current models of core formation suggest that metal-silicate reactions occurred over a wide pressure, temperature, and compositional space to ultimately impose the chemistries of the cores and silicate portions of rocky planets. Additionally, the solubilities of volatile elements in magmas determine their transfer between the planetary interiors and atmospheres, which has recently come into sharper focus in the context of highly irradiated, potentially molten exoplanets. Recently, there has been a significant push to experimentally investigate the metal-silicate and magma-gas exchange coefficients for volatile elements over a wide range of conditions relevant to rocky planet formation. Qualitatively, results from the metal-silicate partitioning studies suggest that cores of rocky planets could be major reservoirs of the volatile elements though significant amounts will remain in mantles. Results from solubility studies imply that under oxidizing conditions, most H and S are sequestered in the magma ocean, while most N is outgassed to the atmosphere, and C is nearly equally distributed between the atmosphere and the interior. Under reducing conditions, nearly all N dissolves in the magma ocean, the atmosphere becomes the dominant C reservoir, while H becomes more equally distributed between the interior and the atmosphere, and S remains dominantly in the interior. These chemical trends bear numerous implications for the chemical differentiation of rocky planets and the formation and longevity of secondary atmospheres in the early Solar System and exoplanetary systems. Further experimental and modeling efforts are required to understand the potential of chemical and physical disequilibria during core formation and magma ocean crystallization and to constrain the distributions of volatile elements in the interiors and atmospheres of rocky planets through their formation and long-term geologic evolution.</p

    Raman spectroscopy study of C-O-H-N speciation in reduced basaltic glasses: Implications for reduced planetary mantles

    Get PDF
    To better understand the solution of volatile species in a reduced magma ocean, we identify via Raman spectroscopy the nature of C-O-H-N volatile species dissolved in a series of reduced basaltic glasses. The oxygen fugacity (f O2) during synthesis varied from highly reduced at two log units below the iron-wustite buffer (IW-2.1) to moderately reduced (IW-0.4), spanning much of the magmatic f O2 conditions during late stages of terrestrial accretion. Raman vibrational modes for H2, NH2 – , NH3, CH4, CO, CN– , N2, and OH– species are inferred from band assignments in all reduced glasses. The integrated area of Raman bands assigned to N2, CH4, NH3 and H2 vibrations in glasses increases with increasing molar volume of the melt, whereas that of CO decreases. Additionally, with increasing f O2, CO band areas increase while those of N2 decrease, suggesting that the solubility of these neutral molecules is not solely determined by the melt molar volume under reduced conditions. Coexisting with these neutral molecules, other species as CN– , NH2 – and OH– are chemically bonded within the silicate network. The observations indicate that, under reduced conditions, (1) H2, NH2 – , NH3, CH4, CO, CN– , N2, and OH– species coexist in silicate glasses representative of silicate liquids in a magma ocean (2) their relative abundances dissolved in a magma ocean depend on melt composition, f O2 and the availability of H and, (3) metal-silicate partitioning or degassing reactions of those magmatic volatile species must involve changes in melt and vapor speciation, which in turn may influence isotopic fractionation.CD and MH acknowledge support from the National Science Foundation grant AST1344133. SDJ acknowledges support from NSF EAR-1853521 and the David and Lucile Packard Foundation

    In situ study at high pressure and temperature of the environment of water in hydrous Na and Ca aluminosilicate melts and coexisting aqueous fluids

    No full text
    The bonding and speciation of water dissolved in Na silicate and Na and Ca aluminosilicate melts were inferred from in situ Raman spectroscopy of the samples, in hydrothermal diamond anvil cells, while at crustal temperature and pressure conditions. Raman data were also acquired on Na silicate and Na and Ca aluminosilicate glasses, quenched from hydrous melts equilibrated at high temperature and pressure in a piston cylinder apparatus. In the hydrous melts, temperature strongly influences O-H stretching ν(O-H) signals, reflecting its control on the bonding of protons between different molecular complexes. Pressure and melt composition effects are much smaller and difficult to discriminate with the present data. However, the chemical composition of the melt + fluid system influences the differences between the ν(O-H) signals from the melts and the fluids and, hence, between their hydrogen partition functions. Quenching modifies the O-H stretching signals: strong hydrogen bonds form in the glasses below the glass transition temperature Tg, and this phenomenon depends on glass composition. Therefore, glasses do not necessarily record the O-H stretching signal shape in melts near Tg. The melt hydrogen partition function thus cannot be assessed with certainty using O-H stretching vibration data from glasses. From the present results, the ratio of the hydrogen partition functions of hydrous silicate melts and aqueous fluids mostly depends on temperature and the bulk melt + fluid system chemical composition. This implies that the fractionation of hydrogen isotopes between magmas and aqueous fluids in water-saturated magmatic systems with differences in temperature and bulk chemical composition will be different

    Redox controls on H and N speciation and intermolecular isotopic fractionations in aqueous fluids at high pressure and high temperature: Insights from in-situ experiments

    No full text
    International audienceAqueous magmatic fluids are essential to the transport of hydrogen (H), carbon (C), and nitrogen (N) from the mantle to the surface, during which changes in pressure, temperature, and redox conditions affect the chemical speciation and intermolecular isotopic fractionations of H, C, and N. Here, we performed a series of hydrothermal diamond-anvil cell experiments to evaluate the role of pressure, temperature, and redox conditions on the speciation and intermolecular fractionations of H and N during the decompression and cooling of aqueous fluids from 780 MPa and 800 °C to 150 MPa and 200 °C. We used Raman spectroscopy to investigate the distribution and exchange reactions of H and N isotopologues between water, methane, ammonia, and di-nitrogen molecules under changing physicochemical conditions. Our experiments show that upon decompression, a C-and N-bearing fluid will preferentially degas D-rich methane and 15 N-rich N2, depleting the residual aqueous fluid in those isotopes. If this fluid precipitates N-rich (i.e., NH4 +-bearing) minerals, the observed N isotopic fractionation is opposite to that during N2 degassing, enriching the aqueous fluid in 15 N. Because these fractionations result from changes in H, C, and N speciation in the aqueous fluid, their magnitudes depend on redox conditions as well as pressure and temperature. Our new in-situ experimental results are consistent with the large H and N isotopic fractionations observed between water, methane, and ammonia species in aqueous fluids at high pressures and temperatures, although the magnitude of the fractionations in our experiments cannot be quantified. Nonetheless, our results suggest that statistical thermodynamic models likely underestimate isotopic fractionation effects for isotopic molecules under these conditions, and should account for solubility and isotopic effects of the solvent associated with the solvation of water, methane, and ammonia isotopologues in aqueous fluids. This work has significant implications for interpreting isotopic measurements of natural samples from hydrothermal systems because it offers insights into isotopic fractionations in multicomponent and multiphase systems under hydrothermal temperatures and pressures
    corecore