83 research outputs found

    Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia

    Get PDF
    Pharmacological, genetic and expression studies implicate N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia (SCZ). Similarly, several lines of evidence suggest that autism spectrum disorders (ASD) could be due to an imbalance between excitatory and inhibitory neurotransmission. As part of a project aimed at exploring rare and/or de novo mutations in neurodevelopmental disorders, we have sequenced the seven genes encoding for NMDA receptor subunits (NMDARs) in a large cohort of individuals affected with SCZ or ASD (n=429 and 428, respectively), parents of these subjects and controls (n=568). Here, we identified two de novo mutations in patients with sporadic SCZ in GRIN2A and one de novo mutation in GRIN2B in a patient with ASD. Truncating mutations in GRIN2C, GRIN3A and GRIN3B were identified in both subjects and controls, but no truncating mutations were found in the GRIN1, GRIN2A, GRIN2B and GRIN2D genes, both in patients and controls, suggesting that these subunits are critical for neurodevelopment. The present results support the hypothesis that rare de novo mutations in GRIN2A or GRIN2B can be associated with cases of sporadic SCZ or ASD, just as it has recently been described for the related neurodevelopmental disease intellectual disability. The influence of genetic variants appears different, depending on NMDAR subunits. Functional compensation could occur to counteract the loss of one allele in GRIN2C and GRIN3 family genes, whereas GRIN1, GRIN2A, GRIN2B and GRIN2D appear instrumental to normal brain development and function

    Search for the standard model Higgs boson at LEP

    Get PDF

    The role of inflammation in epilepsy.

    Get PDF
    Epilepsy is the third most common chronic brain disorder, and is characterized by an enduring predisposition to generate seizures. Despite progress in pharmacological and surgical treatments of epilepsy, relatively little is known about the processes leading to the generation of individual seizures, and about the mechanisms whereby a healthy brain is rendered epileptic. These gaps in our knowledge hamper the development of better preventive treatments and cures for the approximately 30% of epilepsy cases that prove resistant to current therapies. Here, we focus on the rapidly growing body of evidence that supports the involvement of inflammatory mediators-released by brain cells and peripheral immune cells-in both the origin of individual seizures and the epileptogenic process. We first describe aspects of brain inflammation and immunity, before exploring the evidence from clinical and experimental studies for a relationship between inflammation and epilepsy. Subsequently, we discuss how seizures cause inflammation, and whether such inflammation, in turn, influences the occurrence and severity of seizures, and seizure-related neuronal death. Further insight into the complex role of inflammation in the generation and exacerbation of epilepsy should yield new molecular targets for the design of antiepileptic drugs, which might not only inhibit the symptoms of this disorder, but also prevent or abrogate disease pathogenesis

    Ape Conservation Physiology: Fecal Glucocorticoid Responses in Wild Pongo pygmaeus morio following Human Visitation

    Get PDF
    Nature-based tourism can generate important revenue to support conservation of biodiversity. However, constant exposure to tourists and subsequent chronic activation of stress responses can produce pathological effects, including impaired cognition, growth, reproduction, and immunity in the same animals we are interested in protecting. Utilizing fecal samples (Nβ€Š=β€Š53) from 2 wild habituated orangutans (Pongo pygmaeus morio) (in addition to 26 fecal samples from 4 wild unhabituated orangutans) in the Lower Kinabatangan Wildlife Sanctuary of Sabah, Malaysian Borneo, we predicted that i) fecal glucocorticoid metabolite concentrations would be elevated on the day after tourist visitation (indicative of normal stress response to exposure to tourists on the previous day) compared to samples taken before or during tourist visitation in wild, habituated orangutans, and ii) that samples collected from habituated animals would have lower fecal glucocorticoid metabolites than unhabituated animals not used for tourism. Among the habituated animals used for tourism, fecal glucocorticoid metabolite levels were significantly elevated in samples collected the day after tourist visitation (indicative of elevated cortisol production on the previous day during tourist visitation). Fecal glucocorticoid metabolite levels were also lower in the habituated animals compared to their age-matched unhabituated counterparts. We conclude that the habituated animals used for this singular ecotourism project are not chronically stressed, unlike other species/populations with documented permanent alterations in stress responses. Animal temperament, species, the presence of coping/escape mechanisms, social confounders, and variation in amount of tourism may explain differences among previous experiments. Acute alterations in glucocorticoid measures in wildlife exposed to tourism must be interpreted conservatively. While permanently altered stress responses can be detrimental, preliminary results in these wild habituated orangutans suggest that low levels of predictable disturbance can likely result in low physiological impact on these animals

    Autoantibodies to central nervous system neuronal surface antigens: psychiatric symptoms and psychopharmacological implications

    Get PDF

    β€˜Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: Anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ARHGAP26 and anti-VGCC

    Full text link

    Diagnostic value of N-methyl-D-aspartate receptor antibodies in women with new-onset epilepsy.

    No full text
    BACKGROUND: In women younger than 45 years, a new form of encephalitis associated with ovarian teratoma and presenting with seizures and psychiatric symptoms has been described. Most patients have antibodies to NR1/NR2 heteromers of the N-methyl-D-aspartate receptor (NMDAR). OBJECTIVE: To assess the frequency and significance of antibodies to NMDAR in otherwise unexplained new-onset epilepsies in young women. DESIGN: Prospective cohort study. SETTING: University department of epileptology. PATIENTS: From January 1, 2005, to June 30, 2007, we identified 19 female patients aged 15 to 45 years with unexplained new-onset epilepsy. In addition, we studied 61 cerebrospinal fluid-serum sample pairs from patients with other cryptogenic epilepsies and 11 cerebrospinal fluid-serum sample pairs from surgically treated patients with epilepsy with no evident encephalitic abnormalities. MAIN OUTCOME MEASURES: Antibodies to NMDAR and characteristics of affected patients. RESULTS: Five of the 19 patients had antibodies against NMDAR. These patients had diffuse cerebral dysfunction and seizure origins. Psychiatric symptoms and pleocytosis were significantly associated with this group of patients. The disease course was episodic, in part relapsing-remitting, with full recoveries either spontaneously or after corticosteroid or intravenous immunoglobulin treatments. Only 1 patient had a neoplasm (multiple neuroendocrine tumors that included the ovaries) identified to date. In the control series, one 22-year-old man with a cryptogenic, severely encephalopathic seizure disorder was NMDAR antibody positive, and he also recovered fully. CONCLUSIONS: Anti-NMDAR encephalitis accounts for a relevant proportion of otherwise unexplained new-onset epilepsies. Patients harboring NMDAR antibodies usually have prominent psychiatric symptoms and pleocytosis, and they may develop hypoventilation. Anti-NMDAR encephalitis is not always paraneoplastic
    • …
    corecore