1,773 research outputs found

    Effects of ambient noise on zebra finch vigilance and foraging efficiency

    Get PDF
    This is the final version. Available on open access from Public Library of Science via the DOI in this recordAmbient noise can affect the availability of acoustic information to animals, altering both foraging and vigilance behaviour. Using captive zebra finches Taeniopygia guttata, we examined the effect of ambient broadband noise on foraging decisions. Birds were given a choice between foraging in a quiet area where conspecific calls could be heard or a noisy area where these calls would be masked. Birds foraging in noisy areas spent a significantly more time vigilant than those in quiet areas, resulting in less efficient foraging. Despite this there was no significant difference in the amount of time spent in the two noise regimes. However there did appear a preference for initially choosing quiet patches during individuals’ second trial. These results emphasise how masking noise can influence the foraging and anti-predation behaviour of animals, which is particularly relevant as anthropogenic noise becomes increasingly prevalent in the natural worl

    On the abundances of GRO J1655-40

    Get PDF
    Context: The detection of overabundances of α\alpha-elements and lithium in the secondary star of a black-hole binary provides important insights about the formation of a stellar-mass black-hole. α\alpha-enhancement might theoretically also be the result of pollution by the nucleosynthesis occurring during an outburst, or through spallation by the jet. Aims: We study the abundances, and their possible variations with time, in the secondary star of the runaway black-hole binary GRO J1655--40, in order to understand their origin. Methods: We present a detailed comparison between a Keck spectrum obtained in 1998 found in the literature, archival VLT-UVES data taken in 2004 and new VLT-UVES spectra obtained early 2006. We carefully determine the equivalent widths of different α\alpha-elements (Mg, O, Ti, S and Si) with their associated uncertainty. We use the well-studied comparison star HD 156098 as well as synthetic spectra to match the spectrum of GRO J1655--40 in order to determine the abundances of these elements. Results: We see no significant variations of equivalent widths with time. Our fit using HD 156098 reveals that there is significant overabundance of oxygen in all our spectra, but no overabundances of any of the other α\alpha-elements. Finally, we do not detect the lithium line at 6707 \AA. Conclusions: We show that there is no detected pollution in GRO J1655--40 after the burst in 2005. Moreover, we argue that uncertainties in the equivalent widths were previously underestimated by a factor of \sim3. Consequently, our results challenge the existence of general overabundances of α\alpha-elements observed in this galactic black-hole binary, and thus the accepted interpretation that they are of supernova origin. The physical cause of the overabundance of oxygen remains unclear

    Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters

    Get PDF
    In this study we tested the applicability of a method, originally developed for terrestrial plant leaves, to retrieve chlorophyll-a concentrations from reflectance spectra of turbid productive waters. We tuned the conceptual model according to the optical characteristics of the aquatic medium, and accurately predicted chlorophyll-a concentrations in water bodies over a wide range of optical conditions. Our results provide evidence that this technique may be considered as a general solution, independent of the type of medium, for assessing chlorophyll concentration in optically deep media using remotely sensed data

    Ins and outs of multipartite positive-strand RNA plant viruses: Packaging versus systemic spread

    Get PDF
    Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the \u201clife aspects\u201d of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant. \ua9 2016 by the authors; licensee MDPI, Basel, Switzerland

    Geologic mapping in Greenland with polarimetric SAR

    Get PDF

    The amplitude of solar oscillations using stellar techniques

    Full text link
    The amplitudes of solar-like oscillations depend on the excitation and damping, both of which are controlled by convection. Comparing observations with theory should therefore improve our understanding of the underlying physics. However, theoretical models invariably compute oscillation amplitudes relative to the Sun, and it is therefore vital to have a good calibration of the solar amplitude using stellar techniques. We have used daytime spectra of the Sun, obtained with HARPS and UCLES, to measure the solar oscillations and made a detailed comparison with observations using the BiSON helioseismology instrument. We find that the mean solar amplitude measured using stellar techniques, averaged over one full solar cycle, is 18.7 +/- 0.7 cm/s for the strongest radial modes (l=0) and 25.2 +/- 0.9 cm/s for l=1. In addition, we use simulations to establish an equation that estimates the uncertainty of amplitude measurements that are made of other stars, given that the mode lifetime is known. Finally, we also give amplitudes of solar-like oscillations for three stars that we measured from a series of short observations with HARPS (gamma Ser, beta Aql and alpha For), together with revised amplitudes for five other stars for which we have previously published results (alpha Cen A, alpha Cen B, beta Hyi, nu Ind and delta Pav).Comment: 8 pages, accepted by ApJ. Minor wording changes and added a referenc

    Development of an airborne ice sounding radar front-end

    Get PDF

    Social information use and collective foraging in a pursuit diving seabird

    Get PDF
    Individuals of many species utilise social information whilst making decisions. While many studies have examined social information in making large scale decisions, there is increasing interest in the use of fine scale social cues in groups. By examining the use of these cues and how they alter behaviour, we can gain insights into the adaptive value of group behaviours. We investigated the role of social information in choosing when and where to dive in groups of socially foraging European shags. From this we aimed to determine the importance of social information in the formation of these groups. We extracted individuals’ surface trajectories and dive locations from video footage of collective foraging and used computational Bayesian methods to infer how social interactions influence diving. Examination of group spatial structure shows birds form structured aggregations with higher densities of conspecifics directly in front of and behind focal individuals. Analysis of diving behaviour reveals two distinct rates of diving, with birds over twice as likely to dive if a conspecific dived within their visual field in the immediate past. These results suggest that shag group foraging behaviour allows individuals to sense and respond to their environment more effectively by making use of social cues

    Real-time prediction of breast lesions displacement during Ultrasound scanning using a position-based dynamics approach.

    Get PDF
    Although ultrasound (US) images represent the most popular modality for guiding breast biopsy, they are sometimes unable to render malignant regions, thus preventing accurate lesion localization which is essential for a successful procedure. Biomechanical models can support the localization of suspicious areas identified on a pre-operative image during US scanning since they are able to account for anatomical deformations resulting from US probe pressure. We propose a deformation model which relies on position-based dynamics (PBD) approach to predict the displacement of internal targets induced by probe interaction during US acquisition. The PBD implementation available in NVIDIA FleX is exploited to create an anatomical model capable of deforming in real-time. In order to account for each patient\u2019s specificities, model parameters are selected as those minimizing the localization error of a US-visible landmark of the anatomy of interest (in our case, a realistic breast phantom). The updated model is used to estimate the displacement of other internal lesions due to probe-tissue interaction. The proposed approach is compared to a finite element model (FEM), generally used in breast biomechanics, and a rigid one. Localization error obtained when applying the PBD model remains below 11 mm for all the tumors even for input displacements in the order of 30 mm. The proposed method obtains results aligned with FE models with faster computational performance, suitable for real-time applications. In addition, it outperforms rigid model used to track lesion position in US-guided breast biopsies, at least halving the localization error for all the displacement ranges considered. Position-based dynamics approach has proved to be successful in modeling breast tissue deformations during US acquisition. Its stability, accuracy and real-time performance make such model suitable for tracking lesions displacement during US-guided breast biopsy
    corecore