433 research outputs found
Optimal equilibria of the best shot game
We consider any network environment in which the "best shot game" is played.
This is the case where the possible actions are only two for every node (0 and
1), and the best response for a node is 1 if and only if all her neighbors play
0. A natural application of the model is one in which the action 1 is the
purchase of a good, which is locally a public good, in the sense that it will
be available also to neighbors. This game typically exhibits a great
multiplicity of equilibria. Imagine a social planner whose scope is to find an
optimal equilibrium, i.e. one in which the number of nodes playing 1 is
minimal. To find such an equilibrium is a very hard task for any non-trivial
network architecture. We propose an implementable mechanism that, in the limit
of infinite time, reaches an optimal equilibrium, even if this equilibrium and
even the network structure is unknown to the social planner.Comment: submitted to JPE
Statics and dynamics of selfish interactions in distributed service systems
We study a class of games which model the competition among agents to access
some service provided by distributed service units and which exhibit congestion
and frustration phenomena when service units have limited capacity. We propose
a technique, based on the cavity method of statistical physics, to characterize
the full spectrum of Nash equilibria of the game. The analysis reveals a large
variety of equilibria, with very different statistical properties. Natural
selfish dynamics, such as best-response, usually tend to large-utility
equilibria, even though those of smaller utility are exponentially more
numerous. Interestingly, the latter actually can be reached by selecting the
initial conditions of the best-response dynamics close to the saturation limit
of the service unit capacities. We also study a more realistic stochastic
variant of the game by means of a simple and effective approximation of the
average over the random parameters, showing that the properties of the
average-case Nash equilibria are qualitatively similar to the deterministic
ones.Comment: 30 pages, 10 figure
Large deviations of cascade processes on graphs
Simple models of irreversible dynamical processes such as Bootstrap
Percolation have been successfully applied to describe cascade processes in a
large variety of different contexts. However, the problem of analyzing
non-typical trajectories, which can be crucial for the understanding of the
out-of-equilibrium phenomena, is still considered to be intractable in most
cases. Here we introduce an efficient method to find and analyze optimized
trajectories of cascade processes. We show that for a wide class of
irreversible dynamical rules, this problem can be solved efficiently on
large-scale systems
Collaboration in Social Networks
The very notion of social network implies that linked individuals interact
repeatedly with each other. This allows them not only to learn successful
strategies and adapt to them, but also to condition their own behavior on the
behavior of others, in a strategic forward looking manner. Game theory of
repeated games shows that these circumstances are conducive to the emergence of
collaboration in simple games of two players. We investigate the extension of
this concept to the case where players are engaged in a local contribution game
and show that rationality and credibility of threats identify a class of Nash
equilibria -- that we call "collaborative equilibria" -- that have a precise
interpretation in terms of sub-graphs of the social network. For large network
games, the number of such equilibria is exponentially large in the number of
players. When incentives to defect are small, equilibria are supported by local
structures whereas when incentives exceed a threshold they acquire a non-local
nature, which requires a "critical mass" of more than a given fraction of the
players to collaborate. Therefore, when incentives are high, an individual
deviation typically causes the collapse of collaboration across the whole
system. At the same time, higher incentives to defect typically support
equilibria with a higher density of collaborators. The resulting picture
conforms with several results in sociology and in the experimental literature
on game theory, such as the prevalence of collaboration in denser groups and in
the structural hubs of sparse networks
Topology-Induced Inverse Phase Transitions
Inverse phase transitions are striking phenomena in which an apparently more
ordered state disorders under cooling. This behavior can naturally emerge in
tricritical systems on heterogeneous networks and it is strongly enhanced by
the presence of disassortative degree correlations. We show it both
analytically and numerically, providing also a microscopic interpretation of
inverse transitions in terms of freezing of sparse subgraphs and coupling
renormalization.Comment: 4 pages, 4 figure
Recommended from our members
The role of topology on the dynamics of the Naming Game
The Naming Game captures the essential features leading a population to agree on the use of a semiotic convention (or, more in general, an opinion). Consensus emerges through local negotiations between pairs of agents, in the absence of any central co-ordination. Thus, it is natural that topology, identifying the set of possible interactions, plays a central role in the dynamics of the model. Here, we review the role of different topological properties, pointing out that finite connectivity, combined with the small-world property, ensure the best performances in terms of memory usage and time to reach convergence
Containing epidemic outbreaks by message-passing techniques
The problem of targeted network immunization can be defined as the one of
finding a subset of nodes in a network to immunize or vaccinate in order to
minimize a tradeoff between the cost of vaccination and the final (stationary)
expected infection under a given epidemic model. Although computing the
expected infection is a hard computational problem, simple and efficient
mean-field approximations have been put forward in the literature in recent
years. The optimization problem can be recast into a constrained one in which
the constraints enforce local mean-field equations describing the average
stationary state of the epidemic process. For a wide class of epidemic models,
including the susceptible-infected-removed and the
susceptible-infected-susceptible models, we define a message-passing approach
to network immunization that allows us to study the statistical properties of
epidemic outbreaks in the presence of immunized nodes as well as to find
(nearly) optimal immunization sets for a given choice of parameters and costs.
The algorithm scales linearly with the size of the graph and it can be made
efficient even on large networks. We compare its performance with topologically
based heuristics, greedy methods, and simulated annealing
Algebraic coarsening in voter models with intermediate states
The introduction of intermediate states in the dynamics of the voter model
modifies the ordering process and restores an effective surface tension. The
logarithmic coarsening of the conventional voter model in two dimensions is
eliminated in favour of an algebraic decay of the density of interfaces with
time, compatible with Model A dynamics at low temperatures. This phenomenon is
addressed by deriving Langevin equations for the dynamics of appropriately
defined continuous fields. These equations are analyzed using field theoretical
arguments and by means of a recently proposed numerical technique for the
integration of stochastic equations with multiplicative noise. We find good
agreement with lattice simulations of the microscopic model.Comment: 11 pages, 5 figures; minor typos correcte
Optimal Paths in Complex Networks with Correlated Weights: The World-wide Airport Network
We study complex networks with weights, , associated with each link
connecting node and . The weights are chosen to be correlated with the
network topology in the form found in two real world examples, (a) the
world-wide airport network, and (b) the {\it E. Coli} metabolic network. Here
, where and are the degrees of
nodes and , is a random number and represents the
strength of the correlations. The case represents correlation
between weights and degree, while represents anti-correlation and
the case reduces to the case of no correlations. We study the
scaling of the lengths of the optimal paths, , with the system
size in strong disorder for scale-free networks for different . We
calculate the robustness of correlated scale-free networks with different
, and find the networks with to be the most robust
networks when compared to the other values of . We propose an
analytical method to study percolation phenomena on networks with this kind of
correlation. We compare our simulation results with the real world-wide airport
network, and we find good agreement
Seismic Response Analysis of Continuous Multispan Bridges with Partial Isolation
Partially isolated bridges are a particular class of bridges in which isolation bearings are placed only between the piers top and the deck whereas seismic stoppers restrain the transverse motion of the deck at the abutments. This paper proposes an analytical formulation for the seismic analysis of these bridges, modelled as beams with intermediate viscoelastic restraints whose properties describe the pier-isolator behaviour. Different techniques are developed for solving the seismic problem. The first technique employs the complex mode superposition method and provides an exact benchmark solution to the problem at hand. The two other simplified techniques are based on an approximation of the displacement field and are useful for preliminary assessment and design purposes. A realistic bridge is considered as case study and its seismic response under a set of ground motion records is analyzed. First, the complex mode superposition method is applied to study the characteristic features of the dynamic and seismic response of the system. A parametric analysis is carried out to evaluate the influence of support stiffness and damping on the seismic performance. Then, a comparison is made between the exact solution and the approximate solutions in order to evaluate the accuracy and suitability of the simplified analysis techniques for evaluating the seismic response of partially isolated bridges
- …