research

Optimal Paths in Complex Networks with Correlated Weights: The World-wide Airport Network

Abstract

We study complex networks with weights, wijw_{ij}, associated with each link connecting node ii and jj. The weights are chosen to be correlated with the network topology in the form found in two real world examples, (a) the world-wide airport network, and (b) the {\it E. Coli} metabolic network. Here wijxij(kikj)αw_{ij} \sim x_{ij} (k_i k_j)^\alpha, where kik_i and kjk_j are the degrees of nodes ii and jj, xijx_{ij} is a random number and α\alpha represents the strength of the correlations. The case α>0\alpha > 0 represents correlation between weights and degree, while α<0\alpha < 0 represents anti-correlation and the case α=0\alpha = 0 reduces to the case of no correlations. We study the scaling of the lengths of the optimal paths, opt\ell_{\rm opt}, with the system size NN in strong disorder for scale-free networks for different α\alpha. We calculate the robustness of correlated scale-free networks with different α\alpha, and find the networks with α<0\alpha < 0 to be the most robust networks when compared to the other values of α\alpha. We propose an analytical method to study percolation phenomena on networks with this kind of correlation. We compare our simulation results with the real world-wide airport network, and we find good agreement

    Similar works

    Available Versions

    Last time updated on 05/06/2019