15 research outputs found

    PGRMC1 localization and putative function in the nucleolus of bovine granulosa cells and oocytes

    Get PDF
    Progesterone Receptor Membrane Component-1 (PGRMC1) is a highly conserved multifunctional protein that is found in numerous systems, including reproductive system. Interestingly, PGRMC1 is expressed at several intracellular locations, including the nucleolus. The aim of this study is to investigate the functional relationship between PGRMC1 and nucleolus. Immunofluorescence experiments confirmed PGRMC1's nucleolar localization in cultured bovine granulosa cells (bGC) and oocytes. Additional experiments conducted on bGC revealed that PGRMC1 co-localizes with nucleolin (NCL), a major nucleolar protein. Furthermore, small interfering RNA (RNAi) mediated gene-silencing experiments showed that when PGRMC1 expression was depleted, NCL translocated from the nucleolus to the nucleoplasm. Similarly, oxidative stress induced by hydrogen peroxide (H2O2) treatment, reduced PGRMC1 immunofluorescent signal in the nucleolus and increased NCL nucleoplasmic signal, when compared to non-treated cells. Although PGRMC1 influenced NCL localization, a direct interaction between these two proteins was not detected using in situ proximity ligation assay. This suggests the involvement of additional molecules in mediating the co-localization of PGRMC1 and nucleolin. Since nucleolin translocates into the nucleoplasm in response to various cellular stressors, PGRMC1's ability to regulate its localization within the nucleolus is likely an important component of mechanism by which cells response to stress. This concept is consistent with PGRMC1's well-described ability to promote ovarian cell survival and provides a rationale for future studies on PGRMC1, NCL and the molecular mechanism by which these two proteins protect against the adverse effect of cellular stressors, including oxidative stress

    Antioxidant and enzyme inhibitory properties of the polyphenolic-rich extract from an ancient apple variety of central Italy (Mela Rosa dei Monti Sibillini)

    Get PDF
    This study was undertaken to evaluate the nutraceutical potential of the Mela Rosa dei Monti Sibillini (MR), an ancient apple variety of the Sibillini Mountains, central Italy. The chemical profile of the apple''s polyphenolic-rich extract (MRE) obtained from first-and second-choice samples using the Amberlite® XAD7HP resin was analyzed by High Performance Liquid Chromatography with Diode-Array and Mass spectrometry (HPLC-DAD-MS) and 21 phytochemicals were quali–quantitatively determined. For comparative purposes, the polyphenol-rich extract of Annurca (ANE), a southern Italian variety, was analyzed. The antioxidant capacity of MREs was evaluated by Folin–Ciocalteu, 1, 1-diphenyl-2-picrylhydrazyl (DPPH), and 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. The inhibitory capacity of MREs for the enzymes a-glucosidase, lipase, monoamine oxidase A, tyrosinase, and acetylcholinesterase was also determined. The MREs showed higher polyphenolic and triterpene profiles than the ANE. Their radical scavenging activity was higher than that of ANE and comparable to the reference trolox. The MRE from the second-choice apples displayed higher contents of the 21 phytochemicals investigated. Either MRE from second-choice or first-choice samples showed enzymatic inhibition with IC50 values higher than those of reference inhibitors but worthy of nutraceutical consideration. Taken together, these results show the potential of MRE as a source of bioactive compounds to be used for pharmaceutical, nutraceutical, and cosmeceutical applications has been confirmed

    Cryotolerance and pregnancy rates after exposure of bovine in vitro-produced embryos to forskolin and linoleic acid before vitrification.

    Get PDF
    The objective of the present study was to evaluate the effects of supplementation of in vitro culture (IVC) medium with drugs that stimulates the lipolysis (Forskolin: Forsk) and inhibit the lipogenesis (Linoleic Acid LA) on the intracytoplasmic lipid content and cryotolerance of bovine embryos (Experiment 1), as well as to evaluate the effect of treatment of embryos with Forsk on the pregnancy rates after transfer to synchronized recipients (Experiment 2).Proceedings of the 30th Annual Meeting of the Brazilian Embryo Technology Society (SBTE); Foz do Iguaçu, PR, Brazil, August 25th to 27th, 2016, and 32nd Meeting of the European Embryo Transfer Association (AETE); Barcelona, Spain, September 9th and 10th, 2016. A327 Support Biotechnologies: Cryopreservation and cryobiology, diagnosis through imaging, molecular biology and ?omics?. Título em português: Criotolerância e taxa de concepção após exposição de embriões bovinos produzidos in vitro ao Forskolin ou ácido linoleico antes da vitrificação

    Impedance-based phenotypic readout of transporter function: a case for glutamate transporters

    Get PDF
    Excitatory amino acid transporters (EAAT/SLC1) mediate Na+-dependent uptake of extracellular glutamate and are potential drug targets for neurological disorders. Conventional methods to assess glutamate transport in vitro are based on radiolabels, fluorescent dyes or electrophysiology, which potentially compromise the cell's physiology and are generally less suited for primary drug screens. Here, we describe a novel label-free method to assess human EAAT function in living cells, i.e., without the use of chemical modifications to the substrate or cellular environment. In adherent HEK293 cells overexpressing EAAT1, stimulation with glutamate or aspartate induced cell spreading, which was detected in real-time using an impedance-based biosensor. This change in cell morphology was prevented in the presence of the Na+/K+-ATPase inhibitor ouabain and EAAT inhibitors, which suggests the substrate-induced response was ion-dependent and transporter-specific. A mechanistic explanation for the phenotypic response was substantiated by actin cytoskeleton remodeling and changes in the intracellular levels of the osmolyte taurine, which suggests that the response involves cell swelling. In addition, substrate-induced cellular responses were observed for cells expressing other EAAT subtypes, as well as in a breast cancer cell line (MDA-MB-468) with endogenous EAAT1 expression. These findings allowed the development of a label-free high-throughput screening assay, which could be beneficial in early drug discovery for EAATs and holds potential for the study of other transport proteins that modulate cell shape.Medicinal Chemistr
    corecore