7 research outputs found

    Tunable double photochromism of a family of bis-DTE bipyridine ligands and their dipolar Zn complexes.

    No full text
    International audienceThe photoinduced ring-closure/ring-opening reactions of a series of bis-dithienylethene derivatives, as free ligands and Zn(II)-complexes, are investigated by resorting to theoretical (time-dependent density functional theory) and kinetic analyses in solution. The originality of the system stems from the tunability of the photoreaction quantum yields and conversion yields as a function of the electronic structure. The latter could be varied by modifying the electron-donating character of the DTE-end substituents L(a-d) (o,o) (a, D = H; b, D = OMe; c, D = NMe(2); d, D = NBu(2)) and/or the Lewis character of the metal ion center L(a-d)ZnX(2) (o,o) (L(a-c), X = OAc; L(d), X = Cl). The orbital description of the doubly-open form (o,o) and half-closed form (o,c) predicts that double closure to the form (c,c) would occur using UV irradiation. Photokinetic studies on the complete series demonstrate that photocyclization proceeds following a sequential ring closure mechanism. They clearly point out distinct quantum yields for the first and second ring closures, the latter being characterized by a significantly lower value. Dramatic decrease in both the quantum yields of the ring-closure and ring-opening processes is demonstrated for the complex L(d)ZnCl(2) exhibiting the strongest charge-transfer character in the series investigated. These studies show that this series of DTE derivatives provides an efficient strategy to tune the photochromic properties through the combination of the electron-donor and electron-acceptor (D-A) groups

    First-principles study of organic molecule for corrosion inhibition

    No full text
    The widespread use of steel in various industries, especially in the transportation of hydrocarbons and gas, has recently gained a potential interest to explore eco-friendly solutions against corrosion. In fact, the highly aggressive environment generates considerable losses that affect global economy of countries that are mainly depending on the production and transport of energy. In the field of corrosion inhibitors, most common method so far available for protection against corrosion relies on synthetic one. These are unfortunately harmful to the environment as well to the human health, however they remain the most popular and the most effective due to their cost, and their ease of application. One of the most challenging issues in this area is the accurate understanding and measure of the degree of the passivation of corrosion inhibitors, which is complex and depend on many factors such as the nature of the metal, the fluid, the electronic structure of the inhibitor, the temperature, the exposure time, and so on. Recently, organic inhibitors have become increasingly attractive due to their competitive character as compared to the synthetic ones. With the use of advanced computational techniques enhanced by the development of density functional theory (DFT), it becomes possible to identify and design at the fundamental level, novel corrosion inhibitor molecules as complementary well established tool beside to the experimental techniques, which are often very expensive and time-consuming. In this work, we explore by mean of DFT, the anti-corrosion effect of the Lawsone molecule (2-hydroxy-1,4-naphthoquinone) and some of its derivatives to clarify and understand the relationship at the fundamental level between the anti-corrosion properties and the structure of the molecule in contact with the iron

    Effects of the metal center and substituting groups on the linear and nonlinear optical properties of substituted styryl-bipyridine metal(II) dichloride complexes: DFT and TDDFT computational investigations and harmonic light scattering measurements.

    No full text
    International audienceUV-visible absorption spectroscopy and harmonic light scattering measurements coupled with density functional theory (DFT) calculations have been carried out for a series of 4,4'-bis(X-styryl)-2,2'-bipyridine M(II) dichloride complexes (M = Co, Ni, Cu, Zn; X = H, OMe, SMe, NMe(2), NEt(2), CN, NO(2)). The roles of the metal and the substituent X on their coordination geometries, absorption, and quadratic nonlinear optical properties have been investigated. We show that these complexes all exhibit a high-spin configuration and display a distorted tetrahedral metallic environment except the copper ones, which are distorted square-planar complexes. When X is a strong electron-donating group (X = NMe(2), NEt(2)), TDDFT calculations clearly demonstrate that, whereas the Zn complexes show an ILCT transition in the visible range, the Co, Ni, and Cu complexes exhibit additional MLCT and LLCT transitions. These latter transitions are vectorially opposed to the ILCT and could contribute to the decrease of the experimental quadratic hyperpolarizability beta values, in the order Zn > Ni approximately Cu > Co. The computation of the beta values using TDDFT for the whole series of the closed-shell Zn(II) complexes featuring different X substituents established that the NLO activity increases with the donating strength of X and more generally with the decrease of the HOMO-LUMO energy gap. When X is a strong withdrawing group, the drastic decrease of the NLO response is explained by the negligible participation of the HOMO-LUMO transitions
    corecore