5 research outputs found

    Anxiolytic effect of Mozart music over short and long photoperiods as part of environmental enrichment in captive Rattus norvegicus (Rodentia: Muridae)

    Get PDF
    Music is known to be able to elicit emotional changes, including anxiolytic effects on humans and animals. Photoperiod has also been reported to play an important role in the modulation of anxiety. In the present study, we examined whether the effect of music on anxiety is influenced by day length, comparing, short day (SD; 8:16 h light/dark) and long day (LD; 16:8 h light/dark) with controls (CD; 12:12 h light/dark). After 8 weeks of photoperiod treatment, rats were randomly assigned to 2 groups: silence and music. In the music group, rats were exposed to music 24 h before behavioral tests to quantify anxiety level. Exposure to Mozart music reduced anxiety in rats in the CD group. These effects of music were abolished by LD. Independently of music, rats exposed to SD exhibited higher levels of anxiety-like behavior than rats exposed to CD, in elevated plus-maze and open-field tests. The present findings suggest that the anxiolytic effects of Mozart music are photoperiod-dependent

    Myocardial Infarction Alters Adaptation of the Tethered Mitral Valve

    Get PDF
    BACKGROUND: In patients with myocardial infarction (MI), leaflet tethering by displaced papillary muscles induces mitral regurgitation (MR), which doubles mortality. Mitral valves (MVs) are larger in such patients but fibrosis sets in counterproductively. The investigators previously reported that experimental tethering alone increases mitral valve area in association with endothelial-to-mesenchymal transition. OBJECTIVES: The aim of this study was to explore the clinically relevant situation of tethering and MI, testing the hypothesis that ischemic milieu modifies mitral valve adaptation. METHODS: Twenty-three adult sheep were examined. Under cardiopulmonary bypass, the papillary muscle tips in 6 sheep were retracted apically to replicate tethering, short of producing MR (tethered alone). Papillary muscle retraction was combined with apical MI created by coronary ligation in another 6 sheep (tethered plus MI), and left ventricular remodeling was limited by external constraint in 5 additional sheep (left ventricular constraint). Six sham-operated sheep were control subjects. Diastolic mitral valve surface area was quantified by 3-dimensional echocardiography at baseline and after 58 ± 5 days, followed by histopathology and flow cytometry of excised leaflets. RESULTS: Tethered plus MI leaflets were markedly thicker than tethered-alone valves and sham control subjects. Leaflet area also increased significantly. Endothelial-to-mesenchymal transition, detected as α-smooth muscle actin-positive endothelial cells, significantly exceeded that in tethered-alone and control valves. Transforming growth factor-β, matrix metalloproteinase expression, and cellular proliferation were markedly increased. Uniquely, tethering plus MI showed endothelial activation with vascular adhesion molecule expression, neovascularization, and cells positive for CD45, considered a hematopoietic cell marker. Tethered plus MI findings were comparable with external ventricular constraint. CONCLUSIONS: MI altered leaflet adaptation, including a profibrotic increase in valvular cell activation, CD45-positive cells, and matrix turnover. Understanding cellular and molecular mechanisms underlying leaflet adaptation and fibrosis could yield new therapeutic opportunities for reducing ischemic MR

    DIII-D research towards establishing the scientific basis for future fusion reactors

    No full text
    DIII-D research is addressing critical challenges in preparation for ITER and the next generation of fusion devices through focusing on plasma physics fundamentals that underpin key fusion goals, understanding the interaction of disparate core and boundary plasma physics, and developing integrated scenarios for achieving high performance fusion regimes. Fundamental investigations into fusion energy science find that anomalous dissipation of runaway electrons (RE) that arise following a disruption is likely due to interactions with RE-driven kinetic instabilities, some of which have been directly observed, opening a new avenue for RE energy dissipation using naturally excited waves. Dimensionless parameter scaling of intrinsic rotation and gyrokinetic simulations give a predicted ITER rotation profile with significant turbulence stabilization. Coherence imaging spectroscopy confirms near sonic flow throughout the divertor towards the target, which may account for the convection-dominated parallel heat flux. Core-boundary integration studies show that the small angle slot divertor achieves detachment at lower density and extends plasma cooling across the divertor target plate, which is essential for controlling heat flux and erosion. The Super H-mode regime has been extended to high plasma current (2.0 MA) and density to achieve very high pedestal pressures (similar to 30 kPa) and stored energy (3.2 MJ) with H-98y2 approximate to 1.6-2.4. In scenario work, the ITER baseline Q = 10 scenario with zero injected torque is found to have a fusion gain metric beta(TE) independent of current between q(95) = 2.8-3.7, and a lower limit of pedestal rotation for RMP ELM suppression has been found. In the wide pedestal QH-mode regime that exhibits improved performance and no ELMs, the start-up counter torque has been eliminated so that the entire discharge uses approximate to 0 injected torque and the operating space is more ITER-relevant. Finally, the high-beta(N) (<= 3.8) hybrid scenario has been extended to the high-density levels necessary for radiating divertor operation, achieving similar to 40% divertor heat flux reduction using either argon or neon with P-tot up to 15 MW

    Benign Fibro-Osseous Lesions of the Craniofacial Complex A Review

    No full text
    corecore