91 research outputs found

    Inpainting basé motif d'images et de vidéos appliqué aux données stéréoscopiques avec carte de profondeur

    Get PDF
    We focus on the study and the enhancement of greedy pattern-based image processing algorithmsfor the specific purpose of inpainting, i.e., the automatic completion of missing data in digitalimages and videos. We first review the state of the art methods in this field and analyze the important steps of prominent greedy algorithms in the literature. Then, we propose a set of changesthat significantly enhance the global geometric coherence of images reconstructed with this kindof algorithms. We also focus on the reduction of the visual bloc artifacts classically appearing inthe reconstruction results. For this purpose, we define a tensor-inspired formalism for fast anisotropic patch blending, guided by the geometry of the local image structures and by the automaticdetection of the artifact locations. We illustrate the improvement of the visual quality brought byour contributions with many examples, and show that we are generic enough to perform similaradaptations to other existing pattern-based inpainting algorithms. Finally, we extend and applyour reconstruction algorithms to stereoscopic image and video data, synthesized with respect tonew virtual camera viewpoints. We incorporate the estimated depth information (available fromthe original stereo pairs) in our inpainting and patch blending formalisms to propose a visuallysatisfactory solution to the non-trivial problem of automatic disocclusion of real resynthesizedstereoscopic scenes.Nous nous intéressons à l'étude et au perfectionnement d'algorithmes de traitement d'image gloutons basés motif, pour traiter le problème général de l'"inpainting", c-à-d la complétion automatique de données manquantes dans les images et les vidéos numériques. Après avoir dressé un état de l'art du domaine et analysé les étapes sensibles des algorithmes gloutons existants dans la littérature, nous proposons, dans un premier temps, un ensemble de modifications améliorant de façon significative la cohérence géométrique globale des images reconstruites par ce type d'algorithmes. Dans un deuxième temps, nous nous focalisons sur la réduction des artefacts visuels de type "bloc" classiquement présents dans les résultats de reconstruction, en proposant un formalisme tensoriel de mélange anisotrope rapide de patchs, guidé par la géométrie des structures locales et par la détection automatique des points de localisation des artefacts. Nous illustrons avec de nombreux exemples que l'ensemble de ces contributions améliore significativement la qualité visuelle des résultats obtenus, tout en restant suffisamment générique pour s'adapter à tous type d'algorithmes d'inpainting basé motif.Pour finir, nous nous concentrons sur l'application et l'adaptation de nos algorithmes de reconstruction sur des données stéréoscopiques (images et vidéos) resynthétisées suivant de nouveaux points de vue virtuels de caméra.Nous intégrons l'information de profondeur estimée (à partir des vues stéréos originales) dans nos méthodes d'inpainting et de mélange de patch pour proposer une solution visuellement satisfaisante au problème difficile de la désoccultation automatique de scènes réelles resynthétisées

    Diagnosis of Methionine/Valine Variant Creutzfeldt-Jakob Disease by Protein Misfolding Cyclic Amplification

    Get PDF
    A patient with a heterozygous variant of Creutzfeldt-Jakob disease (CJD) with a methionine/valine genotype at codon 129 of the prion protein gene was recently reported. Using an ultrasensitive and specific protein misfolding cyclic amplification–based assay for detecting variant CJD prions in cerebrospinal fluid, we discriminated this heterozygous case of variant CJD from cases of sporadic CJD

    Detection of prions in the plasma of presymptomatic and symptomatic patients with variant Creutzfeldt-Jakob disease

    Get PDF
    Variant Creutzfeldt-Jakob disease (vCJD) is a human prion disease resulting from the consumption of meat products contaminated by the agent causing bovine spongiform encephalopathy. Evidence supporting the presence of a population of silent carriers that can potentially transmit the disease through blood transfusion is increasing. The development of a blood-screening assay for both symptomatic vCJD patients and asymptomatic carriers is urgently required. We show that a diagnostic assay combining plasminogen-bead capture and protein misfolding cyclic amplification (PMCA) technologies consistently detected minute amounts of abnormal prion protein from French and British vCJD cases in the required femtomolar range. This assay allowed the blinded identification of 18 patients with clinical vCJD among 256 plasma samples from the two most affected countries, with 100% sensitivity [95% confidence interval (CI), 81.5 to 100%], 99.2% analytical specificity (95% CI, 95.9 to 100%), and 100% diagnostic specificity (95% CI, 96.5 to 100%). This assay also allowed the detection of silent carriage of prions 1.3 and 2.6 years before the clinical onset in two blood donors who later developed vCJD. These data provide a key step toward the validation of this PMCA technology as a blood-based diagnostic test for vCJD and support its potential for detecting presymptomatic patients, a prerequisite for limiting the risk of vCJD transmission through blood transfusion

    Breakthrough infections due to SARS-CoV-2 Delta variant: relation to humoral and cellular vaccine responses

    Get PDF
    IntroductionCOVID-19 vaccines are expected to provide effective protection. However, emerging strains can cause breakthrough infection in vaccinated individuals. The immune response of vaccinated individuals who have experienced breakthrough infection is still poorly understood.MethodsHere, we studied the humoral and cellular immune responses of fully vaccinated individuals who subsequently experienced breakthrough infection due to the Delta variant of SARS-CoV-2 and correlated them with the severity of the disease.ResultsIn this study, an effective humoral response alone was not sufficient to induce effective immune protection against severe breakthrough infection, which also required effective cell-mediated immunity to SARS-CoV-2. Patients who did not require oxygen had significantly higher specific (p=0.021) and nonspecific (p=0.004) cellular responses to SARS-CoV-2 at the onset of infection than those who progressed to a severe form.DiscussionKnowing both humoral and cellular immune response could allow to adapt preventive strategy, by better selecting patients who would benefit from additional vaccine boosters.Trial registration numbershttps://clinicaltrials.gov, identifier NCT04355351; https://clinicaltrials.gov, identifier NCT04429594

    Extending the phenotypic spectrum assessed by the CDR plus NACC FTLD in genetic frontotemporal dementia

    Get PDF
    INTRODUCTION: We aimed to expand the range of the frontotemporal dementia (FTD) phenotypes assessed by the Clinical Dementia Rating Dementia Staging Instrument plus National Alzheimer's Coordinating Center Behavior and Language Domains (CDR plus NACC FTLD). METHODS: Neuropsychiatric and motor domains were added to the standard CDR plus NACC FTLD generating a new CDR plus NACC FTLD-NM scale. This was assessed in 522 mutation carriers and 310 mutation-negative controls from the Genetic Frontotemporal dementia Initiative (GENFI). RESULTS: The new scale led to higher global severity scores than the CDR plus NACC FTLD: 1.4% of participants were now considered prodromal rather than asymptomatic, while 1.3% were now considered symptomatic rather than asymptomatic or prodromal. No participants with a clinical diagnosis of an FTD spectrum disorder were classified as asymptomatic using the new scales. DISCUSSION: Adding new domains to the CDR plus NACC FTLD leads to a scale that encompasses the wider phenotypic spectrum of FTD with further work needed to validate its use more widely. Highlights: The new Clinical Dementia Rating Dementia Staging Instrument plus National Alzheimer's Coordinating Center Behavior and Language Domains neuropsychiatric and motor (CDR plus NACC FTLD-NM) rating scale was significantly positively correlated with the original CDR plus NACC FTLD and negatively correlated with the FTD Rating Scale (FRS). No participants with a clinical diagnosis in the frontotemporal dementia spectrum were classified as asymptomatic with the new CDR plus NACC FTLD-NM rating scale. Individuals had higher global severity scores with the addition of the neuropsychiatric and motor domains. A receiver operating characteristic analysis of symptomatic diagnosis showed nominally higher areas under the curve for the new scales.</p

    Altered plasma protein profiles in genetic FTD – a GENFI study

    Get PDF
    © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.Background: Plasma biomarkers reflecting the pathology of frontotemporal dementia would add significant value to clinical practice, to the design and implementation of treatment trials as well as our understanding of disease mechanisms. The aim of this study was to explore the levels of multiple plasma proteins in individuals from families with genetic frontotemporal dementia. Methods: Blood samples from 693 participants in the GENetic Frontotemporal Dementia Initiative study were analysed using a multiplexed antibody array targeting 158 proteins. Results: We found 13 elevated proteins in symptomatic mutation carriers, when comparing plasma levels from people diagnosed with genetic FTD to healthy non-mutation controls and 10 proteins that were elevated compared to presymptomatic mutation carriers. Conclusion: We identified plasma proteins with altered levels in symptomatic mutation carriers compared to non-carrier controls as well as to presymptomatic mutation carriers. Further investigations are needed to elucidate their potential as fluid biomarkers of the disease process.Open access funding provided by Karolinska Institute. C.G. received funding from EU Joint Programme—Neurodegenerative Disease Research -Prefrontals Vetenskapsrådet Dnr 529–2014-7504, Vetenskapsrådet 2015–02926, Vetenskapsrådet 2018–02754, the Swedish FTD Inititative-Schörling Foundation, Alzheimer Foundation, Brain Foundation, Dementia Foundation and Region Stockholm ALF-project. PN received funding from KTH Center for Applied Precision Medicine (KCAP) funded by the Erling-Persson Family Foundation, the Swedish FTD Inititative-Schörling Foundation and Åhlén foundation. D.G. received support from the EU Joint Programme—Neurodegenerative Disease Research and the Italian Ministry of Health (PreFrontALS) grant 733051042. E.F. has received funding from a Canadian Institute of Health Research grant #327387. F.M. received funding from the Tau Consortium and the Center for Networked Biomedical Research on Neurodegenerative Disease. J.B.R. has received funding from the Welcome Trust (103838) and is supported by the Cambridge University Centre for Frontotemporal Dementia, the Medical Research Council (SUAG/051 G101400) and the National Institute for Health Research Cambridge Biomedical Research Centre (BRC-1215–20014). J.C.V.S. was supported by the Dioraphte Foundation grant 09–02-03–00, Association for Frontotemporal Dementias Research Grant 2009, Netherlands Organization for Scientific Research grant HCMI 056–13-018, ZonMw Memorabel (Deltaplan Dementie, project number 733 051 042), Alzheimer Nederland and the Bluefield Project. J.D.R. is supported by the Bluefield Project and the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, and has received funding from an MRC Clinician Scientist Fellowship (MR/M008525/1) and a Miriam Marks Brain Research UK Senior Fellowship. M.M. has received funding from a Canadian Institute of Health Research operating grant and the Weston Brain Institute and Ontario Brain Institute. M.O. has received funding from Germany’s Federal Ministry of Education and Research (BMBF). R.S-V. is supported by Alzheimer’s Research UK Clinical Research Training Fellowship (ARUK-CRF2017B-2) and has received funding from Fundació Marató de TV3, Spain (grant no. 20143810). R.V. has received funding from the Mady Browaeys Fund for Research into Frontotemporal Dementia. This work was also supported by the EU Joint Programme—Neurodegenerative Disease Research GENFI-PROX grant [2019–02248; to J.D.R., M.O., B.B., C.G., J.C.V.S. and M.S.info:eu-repo/semantics/publishedVersio

    Extending the phenotypic spectrum assessed by the CDR plus NACC FTLD in genetic frontotemporal dementia

    Get PDF
    INTRODUCTION: We aimed to expand the range of the frontotemporal dementia (FTD) phenotypes assessed by the Clinical Dementia Rating Dementia Staging Instrument plus National Alzheimer's Coordinating Center Behavior and Language Domains (CDR plus NACC FTLD). METHODS: Neuropsychiatric and motor domains were added to the standard CDR plus NACC FTLD generating a new CDR plus NACC FTLD-NM scale. This was assessed in 522 mutation carriers and 310 mutation-negative controls from the Genetic Frontotemporal dementia Initiative (GENFI). RESULTS: The new scale led to higher global severity scores than the CDR plus NACC FTLD: 1.4% of participants were now considered prodromal rather than asymptomatic, while 1.3% were now considered symptomatic rather than asymptomatic or prodromal. No participants with a clinical diagnosis of an FTD spectrum disorder were classified as asymptomatic using the new scales. DISCUSSION: Adding new domains to the CDR plus NACC FTLD leads to a scale that encompasses the wider phenotypic spectrum of FTD with further work needed to validate its use more widely. Highlights: The new Clinical Dementia Rating Dementia Staging Instrument plus National Alzheimer's Coordinating Center Behavior and Language Domains neuropsychiatric and motor (CDR plus NACC FTLD-NM) rating scale was significantly positively correlated with the original CDR plus NACC FTLD and negatively correlated with the FTD Rating Scale (FRS). No participants with a clinical diagnosis in the frontotemporal dementia spectrum were classified as asymptomatic with the new CDR plus NACC FTLD-NM rating scale. Individuals had higher global severity scores with the addition of the neuropsychiatric and motor domains. A receiver operating characteristic analysis of symptomatic diagnosis showed nominally higher areas under the curve for the new scales.</p

    Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative (GENFI) cohort

    Get PDF
    Abstract Biomarkers that can predict disease progression in individuals with genetic frontotemporal dementia are urgently needed. We aimed to identify whether baseline MRI-based grey and white matter abnormalities are associated with different clinical progression profiles in presymptomatic mutation carriers in the GENetic Frontotemporal dementia Initiative. 387 mutation carriers were included (160 GRN, 160 C9orf72, 67 MAPT), together with 240 non-carrier cognitively normal controls. Cortical and subcortical grey matter volumes were generated using automated parcellation methods on volumetric 3 T T1-weighted MRI scans, while white matter characteristics were estimated using diffusion tensor imaging. Mutation carriers were divided into two disease stages based on their global CDR®+NACC-FTLD score: presymptomatic (0 or 0.5) and fully symptomatic (1 or greater). W-scores in each grey matter volumes and white matter diffusion measures were computed to quantify the degree of abnormality compared to controls for each presymptomatic carrier, adjusting for their age, sex, total intracranial volume, and scanner type. Presymptomatic carriers were classified as “normal” or “abnormal” based on whether their grey matter volume and white matter diffusion measure w-scores were above or below the cut point corresponding to the 10th percentile of the controls. We then compared the change in disease severity between baseline and one year later in both the “normal” and “abnormal” groups within each genetic subtype, as measured by the CDR®+NACC-FTLD sum-of-boxes score and revised Cambridge Behavioural Inventory total score. Overall, presymptomatic carriers with normal regional w-scores at baseline did not progress clinically as much as those with abnormal regional w-scores. Having abnormal grey or white matter measures at baseline was associated with a statistically significant increase in the CDR®+NACC-FTLD of up to 4 points in C9orf72 expansion carriers, and 5 points in the GRN group as well as a statistically significant increase in the revised Cambridge Behavioural Inventory of up to 11 points in MAPT, 10 points in GRN, and 8 points in C9orf72 mutation carriers. Baseline regional brain abnormalities on MRI in presymptomatic mutation carriers are associated with different profiles of clinical progression over time. These results may be helpful to inform stratification of participants in future trials
    corecore