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vaccine responses
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Introduction: COVID-19 vaccines are expected to provide effective protection.

However, emerging strains can cause breakthrough infection in vaccinated

individuals. The immune response of vaccinated individuals who have

experienced breakthrough infection is still poorly understood.

Methods: Here, we studied the humoral and cellular immune responses of fully

vaccinated individuals who subsequently experienced breakthrough infection

due to the Delta variant of SARS-CoV-2 and correlated them with the severity of

the disease.

Results: In this study, an effective humoral response alone was not sufficient to

induce effective immune protection against severe breakthrough infection,

which also required effective cell-mediated immunity to SARS-CoV-2. Patients

who did not require oxygen had significantly higher specific (p=0.021) and

nonspecific (p=0.004) cellular responses to SARS-CoV-2 at the onset of

infection than those who progressed to a severe form.

Discussion: Knowing both humoral and cellular immune response could allow to

adapt preventive strategy, by better selecting patients who would benefit from

additional vaccine boosters.

Trial registration numbers: https://clinicaltrials.gov, identifier NCT04355351;

https://clinicaltrials.gov, identifier NCT04429594.
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Introduction

Coronavirus disease 2019 (COVID-19) vaccines are expected to

provide an effective protection, since being the most appropriate

preventive approach to SARS-CoV-2 pandemic (1–6). Emerging

strains, such as the Delta (B.1.617.2) or Omicron (B1.1.529) variants

may lead to infection in previously vaccinated individuals (also

called “breakthrough infection”) (7–11), warranting additional

preventive measures and booster vaccine doses, especially in the

elderly, immunocompromised patients, and those with multiple

comorbidities (12, 13). As pointed out elsewhere, the definition of a

breakthrough infection is questionable, because a mild (or

asymptomatic) clinical presentation has limited public health

implications (14). Breakthrough infection rate has been initially

evaluated of approximately 5% in fully vaccinated individuals

(15, 16).

Vaccine efficacy rates in real-life observational settings are

noticeable but partly time-dependent, referring to a waning

immunity and is also compromised in immunosuppressed patients

(4, 8, 17–19). From an immunological point of view, the occurrence

of breakthrough infection in vaccinated individuals depends on two

mechanisms: (i) the lack of induction of a neutralising immune

response with the establishment of a specific B and T response or (ii)

the lack of induction of immune memory response which will result

in a loss of specific B and T response over time (20). The immune

response to a viral agent, including SARS-CoV-2, or to mRNA-

vaccine, involves both the innate and adaptative responses. Innate

immunity induced by Toll-like receptors 3 (TLR3) ant TLR7/8

signalling activates effector cells to mediate viral clearance, induces

inflammation through secretion of proinflammatory cytokines (e.g.,

IL-6 and IL-1b), produces antiviral cytokines and stimulates

adaptative immune response by activating antigen-specific T cells.

Type I and II interferons (IFN), i.e., IFN-a/b and IFN-g, respectively,
are the first line cytokines that fight viral infections. CD4 T cells will

then be able to activate specific cytotoxic T cells and activate B cells

that will differentiate into plasma cells capable of producing

neutralising antibodies. Previous data demonstrated the importance

of both humoral and cellular responses, even more in

immunocompromised patients (21). This response will allow the

establishment of a contingent of memory cells.

Although widely studied at the beginning of the pandemic,

prior to vaccination, the immune response of vaccinated individuals

that experienced breakthrough infection is still poorly understood.

It is now commonly accepted that a sufficient level of anti-spike and

anti-RBD antibodies after vaccination leads to a reduced risk of

symptomatic breakthrough infection (22) even if this cannot be

inferred to Omicron. However, the data regarding the humoral

response of individuals undergoing breakthrough infection are

conflicting (23–25). As for the cellular response of patients with

breakthrough infection, very few data are available to date.

Interestingly, Bastard et al. showed that despite vaccination and

the presence of circulating antibodies capable of neutralizing SARS-

CoV-2, type I IFN-neutralizing autoantibodies may account for a

significant proportion of COVID-19 hypoxemic pneumonia cases
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(26). To our knowledge, no study has investigated type II IFN in the

context of breakthrough infection. Indeed, if type I IFN is a

component of innate immunity, type II IFN is involved in both

innate and adaptative immune responses: IFN-g is produced by

natural killer cells and macrophages, effector cells in innate

immunity, as well as by CD4+ T cells of the Th1 type and CD8+

T cells that participate in the adaptative response.

Thus, the objective of this study was to assess the combined

humoral and cellular immune responses of fully vaccinated

individuals that further experienced breakthrough infection of

various severity levels, during the Delta variant wave. Our

hypothesis is that identifying predictive criteria of severity at an

early stage of SARS-CoV-2 infection should allow to strengthen

early therapeutic strategies. Overall, we will propose a new approach

able to better predict the risk of severe infection as well as the need

(or not) for additional boosters.
Methods

Study design, participants, and
data collection

We performed a prospective monocentric longitudinal and

ancillary study at the Nice University Hospital, France. The

participants were included from two cohorts: (i) patients recruited

during an infectious diseases or emergency room consultation

following COVID-19 symptoms, or as contact of a diagnosed

COVID-19 case (CovImmune 1 study, NCT04355351); (ii)

participants monitored periodically since July 2020 as part of an

epidemiological study in the context of COVID-19 (CovImmune 2

study, NCT04429594) and developing a SARS-CoV-2 infection.

Patients were eligible for inclusion if: (i) they received a complete

vaccination regimen, i.e. at least two doses for mRNA-vaccine

(either BNT162b2 or mRNA-1273) or ChAdOx1-S recombinant

vaccine, or one dose of the Ad26.COV2.S vaccine; (ii) they

developed a SARS-CoV-2 infection, symptomatic or not, in the

aftermath of the vaccination; (iii) SARS-CoV-2 infection was

confirmed by a nasopharyngeal PCR or an antigenic test; (iv) the

last vaccine dose was injected at least ten days before the first

symptoms (symptomatic cases) or the positive SARS-CoV-2 test for

contact-cases (asymptomatic cases); (v) they were infected between

August 2021 and January 2022, assuming that the COVID-19 cases

for which the strain was not determined were infected with the

Delta variant, given its predominance in our region during this

period. Demographic, clinical, biological, and outcome data were

collected by the study investigators and centralized in a database. If

necessary, a clinical research assistant contacted participants by

telephone to complete demographic and clinical data so that none

of these data were missing. The study protocol complies with the

principles of the Declaration of Helsinki and was approved by the

Comite ́ de Protection des Personnes Sud-Ouest et Outre-Mer

institutional review board. Written inform consent was obtained

from all study participants.
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Humoral responses

SARS-CoV-2-specific IgG antibodies
Serological tests for anti-SARS-CoV-2 IgG antibodies were

performed on serum using a commercially available enzyme-

linked immunosorbent assay (ELISA) which used the S1-domain

of the spike protein of SARS-CoV-2 as the antigen (Euroimmun

AG, Lübeck, Germany, #EI 2606-9601 G). They were run on IF

Sprinter IFT/ELISA (Euroimmun) according to the manufacturer’s

protocol. The SARS-CoV-2 IgG antibody titers were expressed in

binding antibody units (BAU)/mL (WHO standard unit).

SARS-CoV-2 neutralization assay
The level of SARS-CoV-2 neutralizing antibodies in patient

serum was estimated by a binding inhibition assay. The V-PLEX

SARS-CoV-2 Panel 17 (ACE2) Kit (Meso Scale Discovery) was used

to measure the ability of patient serum to inhibit binding of the

SARS-CoV-2 Spike protein to the soluble angiotensin-converting

enzyme 2 (ACE2) receptor. Signals were then converted to

percentage according to the formula provided by the manufacturer:

%   inhibition =   (1 −
average   sample   ECL   signal

average   ECL   signal   of   calibrator   8   (diluent   only)
) · 100

To note, antibody tests were performed prior to preventive anti-

SARS-CoV-2 monoclonal antibodies injection. Therefore, this

treatment could not influence the results of the humoral

responses of the patients who received it.
Cellular responses

Cellular responses were assessed by Interferon-Gamma Release

Immuno-Assays (IGRAs). Blood samples for IGRAs were collected

between 8am and 12pm in tubes containing lithium heparinate. After

receipt in the laboratory and within eight hours from blood

collection, immune cells in whole blood were stimulated with

immune agents. To measure IFN-g levels produced after

nonspecific stimulation of both innate and adaptative immune

cells, we used the QuantiFERON®-Monitor test (Qiagen) in which

one millilitre of whole blood was collected in tubes containing

immune agents that mimic pathogen-associated molecular patterns

(R848 as TLR7/8 agonist and anti-CD3 as T-cell stimulant). To

measure IFN-g levels produced by SARS-CoV-2-specific T cells, we

used the QuantiFERON® SARS- CoV-2 test (Qiagen) in which one

millilitre of whole blood was collected in tubes containing a mixture

of SARS-CoV-2 peptides. Stimulated blood samples were incubated

for 18 ± 2 hours at 37°C and centrifugated at 2000-3000 x g for 15

minutes to harvest the plasmas. Plasmas were then stored at -80°C

until analysis and freeze-thaw cycles were minimized to preserve the

quality of the samples. Plasma IFN-g levels after nonspecific and

specific stimulations were measured by ELISA.

Statistics

Data are presented as mean and standard deviation for

quantitative variables with parametric distribution, as median and

interquartile range (IQR) [25e percentile; 75e percentile] for
Frontiers in Immunology 03
quantitative variables with non-parametric distribution, or as

numbers and percentages for qualitative variables. The Shapiro-Wilk

normality test was used to verify the distribution of data. Comparisons

were performed using the unpaired two-sided Student’s t-test or

Wilcoxon-Mann-Whitney U test according to data distribution for

quantitative variables, and the Fisher’s exact test for qualitative

variables. Multiple stepwise regression analysis was used to explore

factors associated with oxygen requirement. Receiver Operating

Characteristic (ROC) curve was used to define an IFN-g threshold

after specific stimulation below which patients would be at risk of

severe COVID-19 defined as the need for oxygen therapy. Patients

with an IFN-g response above this threshold were considered to have a
protective cellular response. Patients with anti-spike IgG level greater

than 264 BAU/mL (21) or who received casirivimab/indevimab (i.e.,

preventive anti-SARS-CoV-2 monoclonal antibodies) were considered

to have a protective humoral response. The associations between

humoral and cellular responses were compared using Spearman rank

correlation coefficient. Reverse Kaplan-Meier curves and LogRank test

were used to compare the probability of oxygen therapy at inclusion

based on humoral and cellular responses. Statistical analyses were

performed using GraphPad Prism 8 (GraphPad Software, Inc., San

Diego, CA) and StatView for Windows, version 5.0 (SAS Institute

Inc.). All comparisons were two-tailed, and the differences were

considered significant when p value< 0.05.

Results

Characteristics of the population
and outcomes

A total of 71 patients were included in this ancillary study, divided

into 55 patients from the CovImmune 1 cohort, and 16 participants

from the CovImmune 2 cohort. (Figure 1). The main clinical

characteristics of this population were reported Table S1 (see

supplemental data), left column. Within this population, a subset of

53 patients had available immunological samples and was subsequently

analysed. Table 1 describes the main characteristics of patients enrolled

in the immunological analysis. A slight feminine predominance was

observed (57%), the median age was 58. Nearly half of the participants

were overweight (47%) and a third of them had more than one

comorbidity. Almost all of them had been vaccinated with an

mRNA vaccine (88%) and 32% had a third (booster) dose. Passive

immunisation by anti-SARS-CoV-2 monoclonal antibodies

(imdevimab/casirivimab) had been previously administered in 15

cases (28%). The median time between the last vaccine dose and the

onset of COVID-19 symptoms (or positive test for asymptomatic

cases) was 132 days. Ten patients were hospitalised, 12 required oxygen

therapy, 3 were admitted in intensive care unit (ICU) and 3 died from

refractory respiratory failure.
Factors associated with
oxygen requirement

As shown in previous studies (27–30), unadjusted analysis

confirmed that the risk of severe COVID-19, (defined here as the
frontiersin.org
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need of oxygen therapy) was significantly higher with increased age

(p=0.002), high body mass index (BMI) (p<0.001) and

comorbidities such as hypertension (p<0.001) and type 2 diabetes

(p=0.002) (Table S1). In this cohort, mRNA vaccination seemed

more likely to be associated with a favourable outcome (p=0.041), as

well as having received a booster dose (p=0.024). However, post-

vaccination delay was not associated with a better prognosis.

Patients who had previously received the administration of

preventive anti-SARS-CoV-2 monoclonal antibodies (casirivimab/

imdevimab) had a better prognosis than others (p=0.02). All

variables associated with oxygen requirement and reaching a

p<0.2 (Table S1) were included in the backward stepwise

regression analysis. In the final model, two independent variables

were associated with oxygen requirement: being older than 65 years

(odds ratio (OR), 5.1 [95% CI, 1.5-17.5], p=0.008) and having at

least one comorbidity (OR, 4.5 [95% CI, 1.1-17.5].
Humoral and cellular post-vaccination
protective responses to severe COVID-19

Among the 71 patients included, 53 of them had an available

blood sample with cell stimulation within three months prior to
Frontiers in Immunology 04
infection or within five days after the positive RT-PCR or antigen test

(Figure 1). Of these 53 patients, 12 required oxygen therapy during

their illness. In this subgroup, we found no differences in the type of

vaccine, number of vaccine doses, anti-SARS-CoV-2 IgG antibody

level, and percentage of Delta variant neutralization according to

patient outcome. However, we found that patients who did not

require oxygen therapy had significantly higher SARS-CoV-2-

specific (p=0.021) and nonspecific (p=0.004) cellular responses

before or at the onset of infection than those who progressed to a

severe form (Table 1; Figure 2A). Vaccine protection (defined by the

absence of a severe form requiring oxygen therapy) was the most

efficient in patients who had developed both a sufficient level of anti-

SARS-CoV-2 antibodies (>760 BAU/ml) and a strong specific cellular

response above (IFN-g level after specific stimulation greater than

0.10 IU/mL) (Figure 2B). Surprisingly, we did not find any correlation

between specific cellular response and anti-SARS-CoV-2 antibody

levels (rho=0.115 [CI 95%, -0.168-0.381], p=0.412; Figure 2B), but we

found a positive correlation between specific cellular response and

Delta variant neutralization (rho=0.281 [CI 95%, 0.003-0.518],

p=0.042) (Figure S1). To note and as expected, we found a strong

positive correlation between anti-SARS-CoV-2 antibody levels and

Delta variant neutralization (rho=0.709 [CI 95%, 0.537-0.825],

p<0.001) (Figure S1).
FIGURE 1

Flow chart showing participants inclusion. The participants were included from two cohorts: (i) patients recruited during a hospital consultation
following COVID-19 symptoms, or as contact of a diagnosed COVID-19 case (CovImmune 1 study, NCT04355351); (ii) participants monitored
periodically since July 2020 as part of an epidemiological study in the context of COVID-19 (CovImmune 2 study, NCT04429594) and developing a
SARS-CoV- 2 infection. Patients were eligible for inclusion if they received a complete vaccination regimen, and they developed a SARS-CoV-2
infection in the aftermath of the vaccination and during the Delta variant period. Of these 71 patients, 53 could be included for immunological
analysis because they had the necessary blood tests at the time of inclusion. COVID-19, coronavirus disease 2019; RT-PCR, reverse transcription-
polymerase chain reaction. Created with BioRender.com.
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We then studied the time from diagnosis of COVID-19 to

initiation of oxygen therapy according to humoral (including

preventive monoclonal antibody therapy or anti-spike IgG level

greater than 264 BAU/mL) and cellular responses (defining by IFN-g
Frontiers in Immunology 05
level after specific stimulation greater than 0.10 IU/mL). We found that

patients with high specific immune responses (post-vaccination and/or

post-treatment with monoclonal antibodies) had a significantly lower

probability of oxygen therapy (p=0.001) (Figure 2C).
TABLE 1 Characteristics of patients and their post vaccination immune response according to oxygen requirement.

Total
n=53

Oxygen support
n=12

No oxygen support
n=41 p-value

Baseline characteristics

Age, years 58 [42-72] 75.0 [63.8-78.5] 53.0 [41-62] 0.013

Male gender, n (%) 23 (43%) 8 (67%) 15 (29%) 0.039

Overweight (BMI > 25 kg/m²) 25 (47%) 9 (75%) 16 (36%) 0.047

More than one comorbidity*, n (%) 16 (30%) 9 (75%) 7 (17%) <0.001

Hypertension 11 (19%) 6 (50%) 5 (12%) <0.001

Diabetes 5 (9%) 4 (33%) 1 (2%) 0.007

Active cancer of hemopathy 7(13%) 5 (42%) 2 (5%) 0.004

SARS-CoV-2 vaccination

Type of vaccine 0.146

mRNA vaccine, n (%) 48 (88%) 9 (75%) 38 (93%) 0.121

Adenovirus vaccine, n (%) 3 (6%) 2 (17%) 1 (2%) 0.125

Combined, n (%) 3 (6%) 1 (8%) 2 (5%) 0.545

Delay since last dose (days) 132 [44-188] 120 [58.5-148-8] 142 [37-201] 0.808

Delay since last dose > 3 months, n (%) 20 (38%) 8 (67%) 12 (57%) 0.719

Booster dose, n (%) 17 (32%) 2 (16%) 15 (36%) 0.296

SARS-CoV-2 breakthrough infection

Presence of symptoms at COVID-19 diagnosis 48 (91%) 12 (100%) 36 (87%) 0.879

Time from blood collection to onset of symptoms, days 4 [2-7] 7 [4-13] 4 [2-5] 0.008

Humoral and cellular immune responses

Anti-SARS-Cov-2 IgG Ab (BAU/mL) 275.9
[28.9-1664.0]

473.0
[168.3-1743]

251.8
[13.1-1459]

0.541

Inhibition of the Delta variant (%) 68 [18-99] 66 [21-99] 68 [13-95] 0.855

Specific CD4+ CD8+ response (IFN-g, IU/mL) 0.35 [0.12-0.76] 0.11 [0.02-0.27] 0.53 [0.14-0.95] 0.021

Nonspecific cellular response (IFN-g, IU/mL) 84 [17-349] 9 [4-57] 123 [24-407] 0.004

Treatments and outcomes

Preventive anti-SARS-CoV-2 mAb, n (%) 15 (28%) 2 (17%) 13 (31%) 0.472

Hospitalization, n (%) 10 (19%) 10 (83%) 0 (0%) <0.001

Corticosteroids, n (%) 12 (23%) 8 (67%) 3 (7%) <0.001

Tocilizumab, n (%) 3 (6%) 3 (25%) 0 (0%) 0.009

ICU admission, n (%) 3 (6%) 3 (25%) 0 (0%) 0.009

Death at 28 days, n (%) 3 (6%) 3 (25%) 0 (0%) 0.009
The number (and percentage) are indicated for categorical variables, median (and interquartile range) for continuous variable. Comparisons were performed using Wilcoxon-Mann-Whitney U
test for quantitative variables, and the Fisher’s exact test for qualitative variables. Significant associations are in bold.
* comorbidities: cardiovascular disease, obesity, respiratory diseases, haematological or solid organ malignancies, Ab, antibodies; BAU, binding antibody units; BMI, body mass index; IFN-g,
interferon-gamma; mAb, monoclonal antibodies; mRNA, messenger RNA vaccine; NA, not applicable.
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Discussion

In this ancillary prospective study, we investigated the humoral

and cellular immune responses of fully vaccinated individuals who

experienced breakthrough infection due to the SARS-CoV-2 Delta

variant and correlated these measures with the severity of COVID-

19. We found that an effective humoral response, as previously

defined (22) or administration of preventive anti-SARS-CoV-2

monoclonal antibodies, was not sufficient alone to induce an

effective immune protection against severe breakthrough

infection, which also required an effective cell-mediated immunity

to SARS-CoV-2. We found no correlation between anti-SARS-

CoV-2 antibody titers and cellular response in this cohort, but a

modest correlation between neutralization titers and the extent of

cell-mediated immunity to SARS- CoV-2, confirming previous data

obtained in specific patient populations (31–33). This result

highlights the importance of collaboration between B and T cells

to improve the affinity of antibodies against their antigenic target,

allowing the initiation of somatic mutations in the variable region.

Clinical data of our cohort are consistent with already known risk

factors of severe COVID-19 such as age, comorbidities, and absence of

preventive specific monoclonal antibodies in the unadjusted analysis,

confirmed for the first two in the multivariable analysis. The limited

size of our cohort does not allow to get more specific clinical insights.
Frontiers in Immunology 06
The choice of defining a full vaccination as two vaccine doses

could be discussed, since a third and even a fourth dose (“boosters”)

are now mainly recommended, in a timed manner (https://

www.cdc.gov/coronavirus/2019-ncov/vaccines/stay-up-to-date.html).

However, only 20% of the cohort was more than 6 months away from

the last vaccine dose, and large studies have demonstrated that a two

doses “full vaccination” is highly effective to prevent hospitalization

(34). But more to the point, the purpose of our research is to correlate

the level of both measured humoral and cellular post- vaccine

immunity to the risk of severe COVID-19, rather than assessing the

vaccine efficacy itself (even if our results showed that patients

requiring no oxygen received more frequently a third dose). So, our

findings could be used whatever the previous immunization mode.

Another point to be addressed is the vaccine-induced immune

response regarding the type of variant. Emergence of Omicron variant

was associated to an incomplete escape to mRNA vaccine-induced

neutralizing antibodies, assessed as less than 30 times neutralizing

activity of mRNA vaccine sera (compared to 614D strain reference),

which it is not the case with the Delta variant with a limited 2.6

decrease of neutralizing activity (35, 36). Thus, our choice to restrict

the study period to the Delta wave in our area, although reducing the

number of included patients, strengthen our data consistency.

Further studies are needed to understand the factors that

stimulate one or the other of the immune responses, i.e., humoral
B

C

A

FIGURE 2

Specific cellular and humoral responses post-vaccination and the risk of oxygen requirement after breakthrough SARS-CoV-2 infection.
(A) Comparison of CD4+ CD8+ specific responses according to oxygen requirement. Statistical significance of difference between groups was
assessed using Mann-Whitney non-parametric test. (B) Correlation between CD4+ CD8+ specific responses and anti-SARS-CoV-2 antibody titers
(BAU/mL). Patients who required oxygen therapy are represented by blue dots, others by black dots. Percentages represent the rates of patients on
oxygen therapy in each dial. The level of IFN-g after specific CD4+ and CD8+ stimulation required for a protective response is represented by a
horizontal red line (i.e. 0.10 IU/mL). The level of anti-SARS-CoV-2 Ab required for a protective response in this cohort is represented by a vertical red
line (i.e. 760 BAU/mL). The association between humoral and cellular responses were compared using Spearman rank correlation coefficient.
(C) Oxygen-free survival rate based on humoral and cellular responses. Patients with an anti-SARS-CoV-2 antibody level greater than 264 BAU/mL
or who received preventive anti-SARS-CoV-2 mAb were considered to have a good humoral response. Patients with IFN-g level after specific
stimulation greater than 0.10 IU/mL were considered to have a good cellular response. The IFN-g threshold of 0.10 IU/mL was determined by ROC
curve with which we made the choice to favor specificity (sensitivity 50% and specificity 85%). A reverse Kaplan-Meier curve and LogRank test
analysis were made to study these data. IFN, interferon; mAb, monoclonal antibodies; ROC, receiver-operating characteristics.
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and/or cellular immune responses, or on the contrary lead to a

failed immune response, as may be the case for the demographic

characteristics and comorbidities inherent to each individual (37).

The risk factors for developing a severe COVID-19 are here the

same as those previously described, i.e., age, BMI, at least one

comorbidity (27–30), and also protective factors, i.e. vaccination

and the administration of therapeutic monoclonal antibodies.

Although several studies have reported a decrease in vaccine

effectiveness with increasing time since vaccination (38, 39), we

did not find this result probably due to a too small sample. A more

comprehensive tool to simply assess both humoral and cellular

post-vaccination responses could allow better targeting of patients

remaining at risk of severe COVID-19 despite vaccination and who

could benefit from a reinforcement of preventive strategies, or even

a modification of the vaccination schedule (e.g., mode of

administration, additional dose, type of vaccine…).

The originality of this study on vaccine breakthrough infections

lies in the prospective follow-up and immunological analyses prior

to the aggravation of the COVID-19. As recently reported, the

relation of type II IFN release to the risk of negative outcome is

suggested here (40).

However, this study has several limitations. First, although the

results are significant, the sample size is small, which limits the

magnitude of the findings. Indeed, the small sample size results in a

heterogeneous cohort, particularly in terms of the type of vaccination

received (85% mRNA vaccine, 11% adenovirus vaccine and 4%

combination) and the time between blood collection and onset of

COVID-19 symptoms. Prospective studies on larger cohorts need to

be conducted to confirm these results. Second, the cohort was not

representative of the population with many comorbid patients and

deaths following infection. This could be explained by the mode of

recruitment (hospital consultation and not in city offices) and by the

aging demography of our region. Finally, the cutoff value applied to

define positive responses by the IFN-g test after specific stimulation

needs to be replicated in another prospective cohort.

In conclusion, we found that the severity of breakthrough

infections with COVID-19 Delta variant in vaccinated individuals

can be predicted based on their humoral and specific cellular post

vaccine responses measured at the onset of the infection. The levels of

these responses do not seem to be correlated with one another at the

individual level, however, the conjunction of both a strong humoral

and a specific cellular response are associated with a favourable

outcome in case of a breakthrough infection. This brings insights

for the future development of biomarkers able to discriminate

vaccinated patients at risk of developing serious breakthrough

infections. This approach deserves larger clinical studies to confirm

our data, including infection by other variants, in vaccinated patients.

If confirmed, our data open the door to a proposal of vaccine

passport, helping to schedule additional boosters more appropriately.
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