80 research outputs found

    Noninvasive technique to evaluate the muscle fiber characteristics using q-space imaging

    Get PDF
    Background Skeletal muscles include fast and slow muscle fibers. The tibialis anterior muscle (TA) is mainly composed of fast muscle fibers, whereas the soleus muscle (SOL) is mainly composed of slow muscle fibers. However, a noninvasive approach for appropriately investigating the characteristics of muscles is not available. Monitoring of skeletal muscle characteristics can help in the evaluation of the effects of strength training and diseases on skeletal muscles. Purpose The present study aimed to determine whether q-space imaging can distinguish between TA and SOL in in vivo mice. Methods In vivo magnetic resonance imaging of the right calves of mice (n = 8) was performed using a 7-Tesla magnetic resonance imaging system with a cryogenic probe. TA and SOL were assessed. q-space imaging was performed with a field of view of 10 mm x 10 mm, matrix of 48 x 48, and section thickness of 1000 mu m. There were ten b-values ranging from 0 to 4244 s/mm(2), and each b-value had diffusion encoding in three directions. Magnetic resonance imaging findings were compared with immunohistological findings. Results Full width at half maximum and Kurtosis maps of q-space imaging showed signal intensities consistent with immunohistological findings for both fast (myosin heavy chain II) and slow (myosin heavy chain I) muscle fibers. With regard to quantification, both full width at half maximum and Kurtosis could represent the immunohistological findings that the cell diameter of TA was larger than that of SOL (P < 0.01). Conclusion q-space imaging could clearly differentiate TA from SOL using differences in cell diameters. This technique is a promising method to noninvasively estimate the fiber type ratio in skeletal muscles, and it can be further developed as an indicator of muscle characteristics.journal articl

    Dynamic Analysis of Photosynthate Translocation Into Strawberry Fruits Using Non-invasive 11C-Labeling Supported With Conventional Destructive Measurements Using 13C-Labeling

    Get PDF
    In protected strawberry (Fragaria × ananassa Duch.) cultivation, environmental control based on the process of photosynthate translocation is essential for optimizing fruit quality and yield, because the process of photosynthate translocation directly affects dry matter partitioning. We visualized photosynthate translocation to strawberry fruits non-invasively with 11CO2 and a positron-emitting tracer imaging system (PETIS). We used PETIS to evaluate real-time dynamics of 11C-labeled photosynthate translocation from a 11CO2-fed leaf, which was immediately below the inflorescence, to individual fruits on an inflorescence in intact plant. Serial photosynthate translocation images and animations obtained by PETIS verified that the 11C-photosynthates from the source leaf reached the sink fruit within 1 h but did not accumulate homogeneously within a fruit. The quantity of photosynthate translocation as represented by 11C radioactivity varied among individual fruits and their positions on the inflorescence. Photosynthate translocation rates to secondary fruit were faster than those to primary or tertiary fruits, even though the translocation pathway from leaf to fruit was the longest for the secondary fruit. Moreover, the secondary fruit was 25% smaller than the primary fruit. Sink activity (11C radioactivity/dry weight [DW]) of the secondary fruit was higher than those of the primary and tertiary fruits. These relative differences in sink activity levels among the three fruit positions were also confirmed by 13C tracer measurement. Photosynthate translocation rates in the pedicels might be dependent on the sink strength of the adjoining fruits. The present study established 11C-photosynthate arrival times to the sink fruits and demonstrated that the translocated material does not uniformly accumulate within a fruit. The actual quantities of translocated photosynthates from a specific leaf differed among individual fruits on the same inflorescence. To the best of our knowledge, this is the first reported observation of real-time translocation to individual fruits in an intact strawberry plant using 11C-radioactive- and 13C-stable-isotope analyses

    Kinetics of Root Ion Absorption Affected by Environmental Factors and Transpiration III. A Kinetic Model Integrated with Transpiration

    No full text

    Kinetics of Root Ion Absorption Affected by Environmental Factors and Transpiration I. Measurement System for Intact Roots

    No full text

    Analyses of high temperature and salt stress on roots in tomato hydroponics

    No full text

    High temperature effect on root absorption

    No full text

    High Temperature Effect on Root Absorption

    No full text
    corecore