116 research outputs found

    Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue

    Get PDF
    Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.This work was co-financed by FCT/MEC and FEDER under Program PT2020 (Project UID/EQU/50020/2013); by Fundacao para a Ciencia e Tecnologia under the strategic funding of UID/BIO/04469/2013 unit; and by Project POCTEP through Project RED/AGROTEC-Experimentation network and transfer for development of agricultural and agro industrial sectors between Spain and Portugal

    Facile Preparation of Organic Nanoparticles by Interfacial Cross-Linking of Reverse Micelles and Template Synthesis of Subnanometer Au−Pt Nanoparticles

    Get PDF
    A single- and a double-tailed cationic surfactant with the triallylammonium headgroup formed reverse micelles (RMs) in heptane/chloroform containing a small amount of water. The reverse micelles were cross-linked at the interface upon UV irradiation in the presence of a water-soluble dithiol cross-linker and a photoinitiator. The resulting interfacially cross-linked reverse micelles (ICRMs) of the single-tailed surfactant aggregated in a solvent-dependent fashion, whereas those of the double-tailed were identical in size as the corresponding RMs. The ICRMs could extract anionic metal salts, such as AuCl4− and PtCl62−, from water into the organic phase. Au and Pt metal nanoparticles were produced upon reduction of metal salts. The covalent nature of the ICRMs made the template synthesis highly predictable, with the size of the metal particles controlled by the amount of the metal salt and the method of reduction. Nanoalloys were obtained by combining two metal precursors in the same reaction. Reduction of the ICRM-entrapped aurate also occurred without any external reducing agents, and the gold nanoparticles differed dramatically from those obtained through sodium borohydride reduction. The same template allowed the preparation of luminescent Au4, Au8, and Au13−Au23 clusters, as well as gold nanoparticles several nanometers in size, simply by using different amounts of gold precursor and reducing conditions

    Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy

    Get PDF
    The analysis of chemical structural characteristics of biorefinery product streams (such as lignin and tannin) has advanced substantially over the past decade, with traditional wet-chemical techniques being replaced or supplemented by NMR methodologies. Quantitative 31P NMR spectroscopy is a promising technique for the analysis of hydroxyl groups because of its unique characterization capability and broad potential applicability across the biorefinery research community. This protocol describes procedures for (i) the preparation/solubilization of lignin and tannin, (ii) the phosphitylation of their hydroxyl groups, (iii) NMR acquisition details, and (iv) the ensuing data analyses and means to precisely calculate the content of the different types of hydroxyl groups. Compared with traditional wet-chemical techniques, the technique of quantitative 31P NMR spectroscopy offers unique advantages in measuring hydroxyl groups in a single spectrum with high signal resolution. The method provides complete quantitative information about the hydroxyl groups with small amounts of sample (~30 mg) within a relatively short experimental time (~30-120 min)

    Mouse Bone Marrow-Derived Mesenchymal Stromal Cells Turn Activated Macrophages into a Regulatory-Like Profile

    Get PDF
    In recent years it has become clear that the therapeutic properties of bone marrow-derived mesenchymal stromal cells (MSC) are related not only to their ability to differentiate into different lineages but also to their capacity to suppress the immune response. We here studied the influence of MSC on macrophage function. Using mouse thioglycolate-elicited peritoneal macrophages (M) stimulated with LPS, we found that MSC markedly suppressed the production of the inflammatory cytokines TNF-α, IL-6, IL-12p70 and interferon-γ while increased the production of IL-10 and IL-12p40. Similar results were observed using supernatants from MSC suggesting that factor(s) constitutively released by MSC are involved. Supporting a role for PGE2 we observed that acetylsalicylic acid impaired the ability of MSC to inhibit the production of inflammatory cytokines and to stimulate the production of IL-10 by LPS-stimulated M. Moreover, we found that MSC constitutively produce PGE2 at levels able to inhibit the production of TNF-α and IL-6 by activated M. MSC also inhibited the up-regulation of CD86 and MHC class II in LPS-stimulated M impairing their ability to activate antigen-specific T CD4+ cells. On the other hand, they stimulated the uptake of apoptotic thymocytes by M. Of note, MSC turned M into cells highly susceptible to infection with the parasite Trypanosoma cruzi increasing more than 5-fold the rate of M infection. Using a model of inflammation triggered by s.c. implantation of glass cylinders, we found that MSC stimulated the recruitment of macrophages which showed a low expression of CD86 and the MHC class II molecule Iab and a high ability to produce IL-10 and IL-12p40, but not IL-12 p70. In summary, our results suggest that MSC switch M into a regulatory profile characterized by a low ability to produce inflammatory cytokines, a high ability to phagocyte apoptotic cells, and a marked increase in their susceptibility to infection by intracellular pathogens

    Impact of Gibbs’ and Duhem’s approaches to thermodynamics on the development of chemical thermodynamics

    No full text
    From 1873 to 1878, the American physicist Josiah Willard Gibbs offered to the scientific community three great articles that proved to be a milestone for the science of thermodynamics. On the other hand, between 1886 and 1896, the French physicist Pierre Maurice Marie Duhem translated thermodynamics into the language of Lagrange’s analytical mechanics. At the same time, he expanded its scope to include thermal phenomena, electromagnetic phenomena, and all kinds of irreversible processes. Duhem formulated a version of thermodynamics characterized by the conceptual unification of mechanics, physics, and chemistry. Overall, the work of both physicists on thermodynamics is tremendous, full of axioms, theorems, corollaries, proofs, and hundreds of equations. Therefore, it would be a utopian aim to provide a short analysis of their work. Instead, the present study will attempt to give a brief outline of the main tools and concepts used by the two physicists. I will argue that each scientist approaches thermodynamics in a new and unique way, which reveals their scientific styles as reflected in their personalities, the writing styles, their behavior toward publicity, and their inclination for publication. Finally, I will examine the influence of their theories on the development of chemical thermodynamics. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature

    The double transfer of thermodynamics: From physics to chemistry and from Europe to America

    No full text
    The aim of this study is twofold: to explore, first, the influence of the intellectual and social conditions on the transfer of thermodynamics to chemistry and thereby the making of chemical thermodynamics, and second, the way that this knowledge was transferred from Europe to America. Consequently, it is of interest to examine the methodological approaches used by physicists and chemists to transfer thermodynamics to chemistry, to evaluate the potential of this science to offer solutions to existing chemical problems, and to discuss the attitude of the scientific community towards these new ideas. The development of chemical thermodynamics in America followed a different route compared to the European experience. Although it was transferred from Europe, it had distinctive characteristics imposed by a different traditional, intellectual and social milieu. This study focuses on the content of the transferred knowledge to America and the direction that this knowledge assumed by the American scientists. As a paradigm, the chemical thermodynamics of Gilbert Newton Lewis will be considered. © 2018 Elsevier Lt

    Conformational analysis of asperlin by NMR spectroscopy and molecular modeling

    No full text
    NOESY experiments and computerised molecular modeling have been employed to examine the configuration and conformation of the epoxypropyl side chain of asperlin in benzene solution. The data support the conclusion that the oxirane ring in this molecule has the 6S,7R configuration. Moreover, the 3J(H-5,H-6) coupling constant about the C-5-C-6 bond has been calculated using an equation suitable for the H-5-C-5-C-6-H-6 segment. This value does not support a single conformation, but rather conformational averaging that provides good agreement between the theoretical and experimental parameters
    corecore