758 research outputs found

    Malondialdehyde Acetaldehyde Adducts (MAA-Adducts) Direct Distinctive Pro-Inflammatory Responses in Endothelial and Macrophage Cell Lines

    Get PDF
    Chronic inflammation plays a critical role in the pathogenesis of atherosclerosis. At present, the mechanism(s) by which inflammation contributes to this disease isnot entirely understood. Inflammation is known to induce oxidative stress, of which one consequence is lipid peroxidation. This process leads to the production of malondialdehyde (MDA), which can subsequently break down to form acetaldehyde (AA). These two aldehyde by-products can covalently interact with the ε-amino group of lysineswithin proteins and lipoproteins leading to the formation of highly immunogenic malondialdehyde-acetaldehyde adducts (MAA-adducts). The aim of this study was to determine the in-vitro cytokine response of endothelial cells and macrophages treated with MAA-modified human serum albumin (HSA-MAA) and low-density lipoprotein (LDL-MAA). In addition, cells isolated from mice with exposure to MAA and high fat diets were stained and imaged for uptake of the modified macromolecules of interest. We found that exposure of endothelial cells resulted in increased expression of IL-6, TNF-α, ICAM-1, VCAM-1, and MCP-1 in response to incubation with HSA-MAA; whereas, the same treatment of macrophages resulted in increased expression of IL-6, TNF-α, and IL-1b. LDL-MAA incubationresulted in increased TNF-α expression in macrophages, but MCP-1 was elevated in endothelial cells. Interestingly, the quantitative and qualitative uptake of triglycerides was increased in both endothelial and macrophage cells when exposed to LDL-MAA compared to LDL alone. The results of these studies demonstrate that different MAA-adducts elicit unique responses in different cell types. Additionally, the presence of MAA appears to modulate the cells leading to increased uptake of triglycerides and further progression of the inflammatory response.https://digitalcommons.unmc.edu/emet_posters/1003/thumbnail.jp

    Southern Infrared Proper Motion Survey I: Discovery of New High Proper Motion Stars From First Full Hemisphere Scan

    Full text link
    We present the first results from the Southern Infrared Proper Motion Survey. Using 2 Micron All Sky Survey data along with that of the SuperCOSMOS sky survey we have been able to produce the first widefield infrared proper motion survey. Having targeted the survey to identify nearby M, L and T dwarfs we have discovered 72 such new objects with proper motions greater than 0.5''/yr with 10 of these having proper motions in excess of 1''/yr. The most interesting of these objects is SIPS1259-4336 a late M dwarf. We have calculated a trigonometric parallax for this object of π=276±41\pi = 276 \pm 41 milliarcseconds yielding a distance of 3.62±0.543.62\pm0.54pc. We have also discovered a common proper motion triple system and an object with a common proper motion with LHS 128. The survey completeness is limited by the small epoch differences between many 2MASS and UKI observations. Hence we only recover 22% of Luyten objects with favourable photometry. However the Luyten study is itself unquantifiably incomplete. We discuss the prospect of enhancing the survey volume by reducing the lower proper motion limit.Comment: 20 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    325 MHz VLA Observations of Ultracool Dwarfs TVLM 513-46546 and 2MASS J0036+1821104

    Full text link
    We present 325 MHz (90 cm wavelength) radio observations of ultracool dwarfs TVLM 513-46546 and 2MASS J0036+1821104 using the Very Large Array (VLA) in June 2007. Ultracool dwarfs are expected to be undetectable at radio frequencies, yet observations at 8.5 GHz (3.5 cm) and 4.9 GHz (6 cm) of have revealed sources with > 100 {\mu}Jy quiescent radio flux and > 1 mJy pulses coincident with stellar rotation. The anomalous emission is likely a combination of gyrosynchrotron and cyclotron maser processes in a long-duration, large-scale magnetic field. Since the characteristic frequency for each process scales directly with the magnetic field magnitude, emission at lower frequencies may be detectable from regions with weaker field strength. We detect no significant radio emission at 325 MHz from TVLM 513-46546 or 2MASS J0036+1821104 over multiple stellar rotations, establishing 2.5{\sigma} total flux limits of 795 {\mu}Jy and 942 {\mu}Jy respectively. Analysis of an archival VLA 1.4 GHz observation of 2MASS J0036+1821104 from January 2005 also yields a non-detection at the level of < 130 {\mu}Jy . The combined radio observation history (0.3 GHz to 8.5 GHz) for these sources suggests a continuum emission spectrum for ultracool dwarfs which is either flat or inverted below 2-3 GHz. Further, if the cyclotron maser instability is responsible for the pulsed radio emission observed on some ultracool dwarfs, our low-frequency non-detections suggest that the active region responsible for the high-frequency bursts is confined within 2 stellar radii and driven by electron beams with energies less than 5 keV.Comment: 11 pages, 5 figures, submitted to A

    L Dwarfs and the Substellar Mass Function

    Get PDF
    Analysis of initial observations from near-infrared sky surveys has shown that the resulting photometric catalogues, combined with far-red optical data, provide an extremely effective method of finding isolated, very low-temperature objects in the general field. Follow-up observations have already identified more than 25 sources with temperatures cooler than the latest M dwarfs. A comparison with detailed model predictions (Burrows & Sharp) indicates that these L dwarfs have effective temperatures between ~2000\pm100 K and 1500\pm100 K, while the available trigonometric parallax data place their luminosities at between 10^{-3.5} and 10^{-4.3} L_solar. Those properties, together with the detection of lithium in one-third of the objects, are consistent with the majority having substellar masses. The mass function cannot be derived directly, since only near-infrared photometry and spectral types are available for most sources, but we can incorporate VLM/brown dwarf models in simulations of the Solar Neighbourhood population and constrain Psi(M) by comparing the predicted L-dwarf surface densities and temperature distributions against observations from the DENIS and 2MASS surveys. The data, although sparse, can be represented by a power-law mass function, Psi(M) ~ M^{-alpha}, with 1 < alpha < 2. Current results favour a value nearer the lower limit. If alpha = 1.3, then the local space density of 0.075 > M/M_solar > 0.01 brown dwarfs is 0.10 systems pc^{-3}. In that case brown dwarfs are twice as common as main-sequence stars, but contribute no more than ~15% of the total mass of the disk.Comment: To appear in Astrophysical Journal (20 August 1999). 44 Pages. For related preprints, see http://www.ipac.caltech.edu/2mass/overview/ldwarfs.htm

    Theoretical search for Chevrel phase based thermoelectric materials

    Full text link
    We investigate the thermoelectric properties of some semiconducting Chevrel phases. Band structure calculations are used to compute thermopowers and to estimate of the effects of alloying and disorder on carrier mobility. Alloying on the Mo site with transition metals like Re, Ru or Tc to reach a semiconducting composition causes large changes in the electronic structure at the Fermi level. Such alloys are expected to have low carrier mobilities. Filling with transition metals was also found to be incompatible with high thermoelectric performance based on the calculated electronic structures. Filling with Zn, Cu, and especially with Li was found to be favorable. The calculated electronic structures of these filled Chevrel phases are consistent with low scattering of carriers by defects associated with the filling. We expect good mobility and high thermopower in materials with the composition close to (Li,Cu)4_4Mo6_6Se8_8, particularly when Li-rich, and recommend this system for experimental investigation.Comment: 4 two-column pages, 4 embedded ps figure

    High contrast optical imaging of companions: the case of the brown dwarf binary HD-130948BC

    Full text link
    High contrast imaging at optical wavelengths is limited by the modest correction of conventional near-IR optimized AO systems.We take advantage of new fast and low-readout-noise detectors to explore the potential of fast imaging coupled to post-processing techniques to detect faint companions to stars at small separations. We have focused on I-band direct imaging of the previously detected brown dwarf binary HD130948BC,attempting to spatially resolve the L2+L2 benchmark system. We used the Lucky-Imaging instrument FastCam at the 2.5-m Nordic Telescope to obtain quasi diffraction-limited images of HD130948 with ~0.1" resolution.In order to improve the detectability of the faint binary in the vicinity of a bright (I=5.19 \pm 0.03) solar-type star,we implemented a post-processing technique based on wavelet transform filtering of the image which allows us to strongly enhance the presence of point-like sources in regions where the primary halo dominates. We detect for the first time the BD binary HD130948BC in the optical band I with a SNR~9 at 2.561"\pm 0.007" (46.5 AU) from HD130948A and confirm in two independent dataset that the object is real,as opposed to time-varying residual speckles.We do not resolve the binary, which can be explained by astrometric results posterior to our observations that predict a separation below the NOT resolution.We reach at this distance a contrast of dI = 11.30 \pm 0.11, and estimate a combined magnitude for this binary to I = 16.49 \pm 0.11 and a I-J colour 3.29 \pm 0.13. At 1", we reach a detectability 10.5 mag fainter than the primary after image post-processing. We obtain on-sky validation of a technique based on speckle imaging and wavelet-transform processing,which improves the high contrast capabilities of speckle imaging.The I-J colour measured for the BD companion is slightly bluer, but still consistent with what typically found for L2 dwarfs(~3.4-3.6).Comment: accepted in A\&

    Trigonometric Parallaxes of Central Stars of Planetary Nebulae

    Get PDF
    Trigonometric parallaxes of 16 nearby planetary nebulae are presented, including reduced errors for seven objects with previous initial results and results for six new objects. The median error in the parallax is 0.42 mas, and twelve nebulae have parallax errors less than 20 percent. The parallax for PHL932 is found here to be smaller than was measured by Hipparcos, and this peculiar object is discussed. Comparisons are made with other distance estimates. The distances determined from these parallaxes tend to be intermediate between some short distance estimates and other long estimates; they are somewhat smaller than estimated from spectra of the central stars. Proper motions and tangential velocities are presented. No astrometric perturbations from unresolved close companions are detected.Comment: 24 pages, includes 4 figures. Accepted for A

    New Models for a Triaxial Milky Way Spheroid and Effect on the Microlensing Optical Depth to the Large Magellanic Cloud

    Full text link
    We obtain models for a triaxial Milky Way spheroid based on data by Newberg and Yanny. The best fits to the data occur for a spheroid center that is shifted by 3kpc from the Galactic Center. We investigate effects of the triaxiality on the microlensing optical depth to the Large Magellanic Cloud (LMC). The optical depth can be used to ascertain the number of Massive Compact Halo Objects (MACHOs); a larger spheroid contribution would imply fewer Halo MACHOs. On the one hand, the triaxiality gives rise to more spheroid mass along the line of sight between us and the LMC and thus a larger optical depth. However, shifting the spheroid center leads to an effect that goes in the other direction: the best fit to the spheroid center is_away_ from the line of sight to the LMC. As a consequence, these two effects tend to cancel so that the change in optical depth due to the Newberg/Yanny triaxial halo is at most 50%. After subtracting the spheroid contribution in the four models we consider, the MACHO contribution (central value) to the mass of the Galactic Halo varies from \~(8-20)% if all excess lensing events observed by the MACHO collaboration are assumed to be due to MACHOs. Here the maximum is due to the original MACHO collaboration results and the minimum is consistent with 0% at the 1 sigma error level in the data.Comment: 26 pages, 2 figures. v2: minor revisions. v3: expanded discussion of the local spheroid density and minor revisions to match version published in Journal of Cosmology and Astroparticle Physics (JCAP
    • …
    corecore