34 research outputs found

    Impact of Macrophage Inflammatory Protein-1α Deficiency on Atherosclerotic Lesion Formation, Hepatic Steatosis, and Adipose Tissue Expansion

    Get PDF
    Macrophage inflammatory protein-1α (CCL3) plays a well-known role in infectious and viral diseases; however, its contribution to atherosclerotic lesion formation and lipid metabolism has not been determined. Low density lipoprotein receptor deficient (LDLR−/−) mice were transplanted with bone marrow from CCL3−/− or C57BL/6 wild type donors. After 6 and 12 weeks on western diet (WD), recipients of CCL3−/− marrow demonstrated lower plasma cholesterol and triglyceride concentrations compared to recipients of C57BL/6 marrow. Atherosclerotic lesion area was significantly lower in female CCL3−/− recipients after 6 weeks and in male CCL3−/− recipients after 12 weeks of WD feeding (P<0.05). Surprisingly, male CCL3−/− recipients had a 50% decrease in adipose tissue mass after WD-feeding, and plasma insulin, and leptin levels were also significantly lower. These results were specific to CCL3, as LDLR−/− recipients of monocyte chemoattractant protein−/− (CCL2) marrow were not protected from the metabolic consequences of high fat feeding. Despite these improvements in LDLR−/− recipients of CCL3−/− marrow in the bone marrow transplantation (BMT) model, double knockout mice, globally deficient in both proteins, did not have decreased body weight, plasma lipids, or atherosclerosis compared with LDLR−/− controls. Finally, there were no differences in myeloid progenitors or leukocyte populations, indicating that changes in body weight and plasma lipids in CCL3−/− recipients was not due to differences in hematopoiesis. Taken together, these data implicate a role for CCL3 in lipid metabolism in hyperlipidemic mice following hematopoietic reconstitution

    Insights on Glucocorticoid Receptor Activity Modulation through the Binding of Rigid Steroids

    Get PDF
    Background: The glucocorticoid receptor (GR) is a transcription factor that regulates gene expression in a ligand-dependent fashion. This modular protein is one of the major pharmacological targets due to its involvement in both cause and treatment of many human diseases. Intense efforts have been made to get information about the molecular basis of GR activity. Methodology/Principal Findings: Here, the behavior of four GR-ligand complexes with different glucocorticoid and antiglucocorticoid properties were evaluated. The ability of GR-ligand complexes to oligomerize in vivo was analyzed by performing the novel Number and Brightness assay. Results showed that most of GR molecules form homodimers inside the nucleus upon ligand binding. Additionally, in vitro GR-DNA binding analyses suggest that ligand structure modulates GRDNA interaction dynamics rather than the receptor's ability to bind DNA. On the other hand, by coimmunoprecipitation studies we evaluated the in vivo interaction between the transcriptional intermediary factor 2 (TIF2) coactivator and different GR-ligand complexes. No correlation was found between GR intranuclear distribution, cofactor recruitment and the homodimerization process. Finally, Molecular determinants that support the observed experimental GR LBD-ligand/TIF2 interaction were found by Molecular Dynamics simulation. Conclusions/Significance: The data presented here sustain the idea that in vivo GR homodimerization inside the nucleus can be achieved in a DNA-independent fashion, without ruling out a dependent pathway as well. Moreover, since at least one GR-ligand complex is able to induce homodimer formation while preventing TIF2 coactivator interaction, results suggest that these two events might be independent from each other. Finally, 21-hydroxy-6,19-epoxyprogesterone arises as a selective glucocorticoid with potential pharmacological interest. Taking into account that GR homodimerization and cofactor recruitment are considered essential steps in the receptor activation pathway, results presented here contribute to understand how specific ligands influence GR behavior. © 2010 Presman et al.Fil:Presman, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Alvarez, L.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Levi, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Martí, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Veleiro, A.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Burton, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Pecci, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Targeted agents and immunotherapies: optimizing outcomes in melanoma

    Full text link
    Treatment options for patients with metastatic melanoma, and especially BRAF-mutant melanoma, have changed dramatically in the past 5 years, with the FDA approval of eight new therapeutic agents. During this period, the treatment paradigm for BRAF-mutant disease has evolved rapidly: the standard-of-care BRAF-targeted approach has shifted from single-agent BRAF inhibition to combination therapy with a BRAF and a MEK inhibitor. Concurrently, immunotherapy has transitioned from cytokine-based treatment to antibody-mediated blockade of the cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and, now, the programmed cell-death protein 1 (PD-1) immune checkpoints. These changes in the treatment landscape have dramatically improved patient outcomes, with the median overall survival of patients with advanced-stage melanoma increasing from approximately 9 months before 2011 to at least 2 years - and probably longer for those with BRAF-V600-mutant disease. Herein, we review the clinical trial data that established the standard-of-care treatment approaches for advanced-stage melanoma. Mechanisms of resistance and biomarkers of response to BRAF-targeted treatments and immunotherapies are discussed, and the contrasting clinical benefits and limitations of these therapies are explored. We summarize the state of the field and outline a rational approach to frontline-treatment selection for each individual patient with BRAF-mutant melanoma

    Guidance for the treatment of deep vein thrombosis and pulmonary embolism

    Full text link

    Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology

    Get PDF
    Skeletal muscle is an organ involved in whole body movement and energy metabolism with the ability to dynamically adapt to different states of (dis-)use. At a molecular level, the peroxisome proliferator-activated receptor Îł coactivators 1 (PGC-1s) are important mediators of oxidative metabolism in skeletal muscle and in other organs. Musculoskeletal disorders as well as obesity and its sequelae are associated with PGC-1 dysregulation in muscle with a concomitant local or systemic inflammatory reaction. In this review, we outline the function of PGC-1 coactivators in physiological and pathological conditions as well as the complex interplay of metabolic dysregulation and inflammation in obesity with special focus on skeletal muscle. We further put forward the hypothesis that, in this tissue, oxidative metabolism and inflammatory processes mutually antagonize each other. The nuclear factor ÎșB (NF-ÎșB) pathway thereby plays a key role in linking metabolic and inflammatory programs in muscle cells. We conclude this review with a perspective about the consequences of such a negative crosstalk on the immune system and the possibilities this opens for clinical applications
    corecore