109 research outputs found

    Use of a reciprocal transplant study to measure the rate of plant community change in a tidal marsh along a salinity gradient

    Get PDF
    The relationship between environmental factors and the spatial distribution of maintained and actively used burrows of the grapsid crab Helograpsus haswellianus was studied at three saltmarsh sites in southeast Queensland, Australia. The sites had been modified by runnelling for mosquito-control, a method that transports low-amplitude tides to areas of saltmarsh. The study investigated the relationship between burrow density, burrow aperture size, and runnelling, as well as the effect of flooding or non-flooding tides and distance from a tidal source. Responses differed at the three sites. The most consistent pattern across all sites was that active burrows were most numerous between 30 and 50 m from the saltmarsh / mangrove interface at the landward side of the tidal source. At particular sites, there were significant relationships between burrow aperture size, tidal period, and the presence of runnels. Generally, few small burrows occurred low on the shore, while larger burrows were distributed across the shore to 50 m. At naturally dry sites, more burrows occurred within 5 m of the runnel, whereas at naturally wet sites, fewer burrows were found close to the runnel. As runnels transport low-amplitude tides, moisture conditions required for burrowing may very between flooding and non-flooding tides. Overall, the influence of tides on the density of crab burrows and their aperture sizes was of more importance than the presence of runnels alone

    Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras

    Get PDF
    A geologically rapid Neoproterozoic oxygenation event is commonly linked to the appearance of marine animal groups in the fossil record. However, there is still debate about what evidence from the sedimentary geochemical record—if any—provides strong support for a persistent shift in surface oxygen immediately preceding the rise of animals. We present statistical learning analyses of a large dataset of geochemical data and associated geological context from the Neoproterozoic and Palaeozoic sedimentary record and then use Earth system modelling to link trends in redox-sensitive trace metal and organic carbon concentrations to the oxygenation of Earth’s oceans and atmosphere. We do not find evidence for the wholesale oxygenation of Earth’s oceans in the late Neoproterozoic era. We do, however, reconstruct a moderate long-term increase in atmospheric oxygen and marine productivity. These changes to the Earth system would have increased dissolved oxygen and food supply in shallow-water habitats during the broad interval of geologic time in which the major animal groups first radiated. This approach provides some of the most direct evidence for potential physiological drivers of the Cambrian radiation, while highlighting the importance of later Palaeozoic oxygenation in the evolution of the modern Earth system
    corecore