41 research outputs found

    Targeted long-read sequencing of the Ewing sarcoma 6p25.1 susceptibility locus identifies germline-somatic interactions with EWSR1-FLI1 binding

    Get PDF
    Ewing sarcoma (EwS) is a rare bone and soft tissue malignancy driven by chromosomal translocations encoding chimeric transcription factors, such as EWSR1-FLI1, that bind GGAA motifs forming novel enhancers that alter nearby expression. We propose that germline microsatellite variation at the 6p25.1 EwS susceptibility locus could impact downstream gene expression and EwS biology. We performed targeted long-read sequencing of EwS blood DNA to characterize variation and genomic features important for EWSR1-FLI1 binding. We identified 50 microsatellite alleles at 6p25.1 and observed that EwS-affected individuals had longer alleles (>135 bp) with more GGAA repeats. The 6p25.1 GGAA microsatellite showed chromatin features of an EWSR1-FLI1 enhancer and regulated expression of RREB1, a transcription factor associated with RAS/MAPK signaling. RREB1 knockdown reduced proliferation and clonogenic potential and reduced expression of cell cycle and DNA replication genes. Our integrative analysis at 6p25.1 details increased binding of longer GGAA microsatellite alleles with acquired EWSR-FLI1 to promote Ewing sarcomagenesis by RREB1-mediated proliferation

    The oral microbiome and breast cancer and nonmalignant breast disease, and its relationship with the fecal microbiome in the Ghana Breast Health Study

    Get PDF
    The oral microbiome, like the fecal microbiome, may be related to breast cancer risk. Therefore, we investigated whether the oral microbiome was associated with breast cancer and nonmalignant breast disease, and its relationship with the fecal microbiome in a case-control study in Ghana. A total of 881 women were included (369 breast cancers, 93 nonmalignant cases and 419 population-based controls). The V4 region of the 16S rRNA gene was sequenced from oral and fecal samples. Alpha-diversity (observed amplicon sequence variants [ASVs], Shannon index and Faiths Phylogenetic Diversity) and beta-diversity (Bray-Curtis, Jaccard and weighted and unweighted UniFrac) metrics were computed. MiRKAT and logistic regression models were used to investigate the case-control associations. Oral sample alpha-diversity was inversely associated with breast cancer and nonmalignant breast disease with odds ratios (95% CIs) per every 10 observed ASVs of 0.86 (0.83-0.89) and 0.79 (0.73-0.85), respectively, compared to controls. Beta-diversity was also associated with breast cancer and nonmalignant breast disease compared to controls (P ≤ .001). The relative abundances of Porphyromonas and Fusobacterium were lower for breast cancer cases compared to controls. Alpha-diversity and presence/relative abundance of specific genera from the oral and fecal microbiome were strongly correlated among breast cancer cases, but weakly correlated among controls. Particularly, the relative abundance of oral Porphyromonas was strongly, inversely correlated with fecal Bacteroides among breast cancer cases (r = -.37, P ≤ .001). Many oral microbial metrics were strongly associated with breast cancer and nonmalignant breast disease, and strongly correlated with fecal microbiome among breast cancer cases, but not controls

    Associations of Circulating Estrogens and Estrogen Metabolites with Fecal and Oral Microbiome in Postmenopausal Women in the Ghana Breast Health Study

    Get PDF
    ABSTRACT The human fecal and oral microbiome may play a role in the etiology of breast cancer through modulation of endogenous estrogen metabolism. This study aimed to investigate associations of circulating estrogens and estrogen metabolites with the fecal and oral microbiome in postmenopausal African women. A total of 117 women with fecal (N = 110) and oral (N = 114) microbiome data measured by 16S rRNA gene sequencing, and estrogens and estrogen metabolites data measured by liquid chromatography tandem mass spectrometry were included. The outcomes were measures of the microbiome and the independent variables were the estrogens and estrogen metabolites. Estrogens and estrogen metabolites were associated with the fecal microbial Shannon index (global P < 0.01). In particular, higher levels of estrone (β = 0.36, P = 0.03), 2-hydroxyestradiol (β = 0.30, P = 0.02), 4-methoxyestrone (β = 0.51, P = 0.01), and estriol (β = 0.36, P = 0.04) were associated with higher levels of the Shannon index, while 16alpha-hydroxyestrone (β = −0.57, P < 0.01) was inversely associated with the Shannon index as indicated by linear regression. Conjugated 2-methoxyestrone was associated with oral microbial unweighted UniFrac as indicated by MiRKAT (P < 0.01) and PERMANOVA, where conjugated 2-methoxyestrone explained 2.67% of the oral microbial variability, but no other estrogens or estrogen metabolites were associated with any other beta diversity measures. The presence and abundance of multiple fecal and oral genera, such as fecal genera from families Lachnospiraceae and Ruminococcaceae, were associated with several estrogens and estrogen metabolites as indicated by zero-inflated negative binomial regression. Overall, we found several associations of specific estrogens and estrogen metabolites and the fecal and oral microbiome. IMPORTANCE Several epidemiologic studies have found associations of urinary estrogens and estrogen metabolites with the fecal microbiome. However, urinary estrogen concentrations are not strongly correlated with serum estrogens, a known risk factor for breast cancer. To better understand whether the human fecal and oral microbiome were associated with breast cancer risk via the regulation of estrogen metabolism, we conducted this study to investigate the associations of circulating estrogens and estrogen metabolites with the fecal and oral microbiome in postmenopausal African women. We found several associations of parent estrogens and several estrogen metabolites with the microbial communities, and multiple individual associations of estrogens and estrogen metabolites with the presence and abundance of multiple fecal and oral genera, such as fecal genera from families Lachnospiraceae and Ruminococcaceae, which have estrogen metabolizing properties. Future large, longitudinal studies to investigate the dynamic changes of the fecal and oral microbiome and estrogen relationship are needed

    Low-frequency variation near common germline susceptibility loci are associated with risk of Ewing sarcoma

    Get PDF
    Background: Ewing sarcoma (EwS) is a rare, aggressive solid tumor of childhood, adolescence and young adulthood associated with pathognomonic EWSR1-ETS fusion oncoproteins altering transcriptional regulation. Genome-wide association studies (GWAS) have identified 6 common germline susceptibility loci but have not investigated low-frequency inherited variants with minor allele frequencies below 5% due to limited genotyped cases of this rare tumor. Methods We investigated the contribution of rare and low-frequency variation to EwS susceptibility in the largest EwS genome-wide association study to date (733 EwS cases and 1,346 unaffected controls of European ancestry). Results We identified two low-frequency variants, rs112837127 and rs2296730, on chromosome 20 that were associated with EwS risk (OR = 0.186 and 2.038, respectively;P-value < 5x10(-8)) and located near previously reported common susceptibility loci. After adjusting for the most associated common variant at the locus, only rs112837127 remained a statistically significant independent signal (OR = 0.200, P-value = 5.84x10(-8)). Conclusions: These findings suggest rare variation residing on common haplotypes are important contributors to EwS risk. Impact Motivate future targeted sequencing studies for a comprehensive evaluation of low-frequency and rare variation around common EwS susceptibility loci

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF
    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events42Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF
    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases

    Dyskeratosis congenita with a novel genetic variant in the DKC1 gene: a case report

    No full text
    Abstract Background Dyskeratosis congenita (DC) is a rare genetic disorder of bone marrow failure inherited in an X-linked, autosomal dominant or autosomal recessive pattern. It has a wide array of clinical features and patients may be cared for by many medical sub specialties. The typical clinical features consist of lacy reticular skin pigmentation, nail dystrophy and oral leukoplakia. As the disease advances, patients may develop progressive bone marrow failure, pulmonary fibrosis, oesophageal stenosis, urethral stenosis, liver cirrhosis as well as haematological and solid malignancies. Several genes have been implicated in the pathogenesis of dyskeratosis congenita, with the dyskerin pseudouridine synthase 1 (DKC1) gene mutations being the X-linked recessive gene. Case presentation Herein, we report a 31-year-old male with history of recurrent febrile episodes who was found to have reticulate skin pigmentation interspersed with hypopigmented macules involving the face, neck and extremities, hyperkeratosis of palms and soles, nail dystrophy, leukoplakia of the tongue, premature graying of hair, watery eyes and dental caries. Several of his male relatives, including two maternal uncles and three maternal cousins were affected with a similar type of disease condition. Pedigree analysis suggested a possible X-linked pattern of inheritance. Genetic testing in the proband showed a novel hemizygous, non-synonymous likely pathogenic variant [NM_001363.4: c.1054A > G: p.Thr352Ala] in the PUA domain of the DKC1 gene. Quantitative polymerase chain reaction for relative telomere length measurements performed in the proband showed that he had very short telomeres [0.38, compared to a control median of 0.71 (range 0.44–1.19)], which is consistent with the DC diagnosis. Co-segregation analysis of the novel mutation and telomere length measurements in the extended family members could not be performed as they were unwilling to provide consent for testing. Conclusions The novel variant detected in the DKC1 gene adds further to the existing scientific literature on the genotype-phenotype correlation of DC, and has important implications for the clinical and molecular characterization of the disease

    Decoupling blood telomere length from age in recipients of allogeneic hematopoietic cell transplant in the BMT-CTN 1202

    Get PDF
    The age of allogeneic hematopoietic cell transplant (HCT) donors and their hematopoietic cell telomere length (TL) might affect recipients’ outcomes. Our goals were to examine the possible effect of these donors’ factors on the recipients’ hematopoietic cell TL and quantify hematopoietic cell TL shortening in the critical first three-month post-HCT. We measured hematopoietic cell TL parameters in 75 recipient-donor pairs, from the Blood and Marrow Transplant Clinical Trials Network (protocol#1202), by Southern blotting (SB), the Telomeres Shortest Length Assay (TeSLA), and quantitative PCR (qPCR). Recipients’ hematopoietic cell TL parameters post-HCT correlated with donors’ age (p0.0001 for all). SB and TeSLA detected hematopoietic cell TL shortening in all recipients post-HCT (mean=0.52kb and 0.47kb, respectively; >15-fold the annual TL shortening in adults; p<0.00001 for both), but qPCR detected shortening only in 57.5% of recipients. TeSLA detected a buildup of post-HCT of telomeres <3 kb in 96% of recipients (p<0.0001). In conclusion, HCT decouples hematopoietic cell TL in the recipients from their own age to reflect the donors’ age. The potential donors’ age effect on outcomes of HCT might be partially mediated by short hematopoietic cell TL in older donors. qPCR-based TL measurement is suboptimal for detecting telomere shortening post-HCT

    Telomere Length Calibration from qPCR Measurement: Limitations of Current Method

    No full text
    Telomere length (TL) comparisons from different methods are challenging due to differences in laboratory techniques and data configuration. This study aimed to assess the validity of converting the quantitative polymerase chain reaction (qPCR) telomere/single copy gene (T/S) ratio to TL in kilobases (kb). We developed a linear regression equation to predict TL from qPCR T/S using flow cytometry with fluorescence in situ hybridization (flow FISH) TL data from 181 healthy donors (age range = 19&ndash;53) from the National Marrow Donor Program (NMDP) biorepository. TL measurements by qPCR and flow FISH were modestly correlated (R2 = 0.56, p &lt; 0.0001). In Bland-Altman analyses, individuals with the shortest (&le;10th percentile) or longest (&ge;90th) flow FISH TL had an over- or under-estimated qPCR TL (bias = 0.89 and &minus;0.77 kb, respectively). Comparisons of calculated TL from the NMDP samples and 1810 age- and sex-matched individuals from the National Health and Nutrition Examination Survey showed significant differences (median = 7.1 versus 5.8 kb, respectively, p &lt; 0.0001). Differences in annual TL attrition were also noted (31 versus 13 bp/year, respectively, p = 0.02). Our results demonstrate that TL calculated in kb from qPCR T/S may yield biased estimates for individuals with the shortest or longest TL, those often of high clinical interest. We also showed that calculated TL in kb from qPCR data are not comparable across populations and therefore are not necessarily useful
    corecore