88 research outputs found

    Multifunctional dendritic polymers in nanomedicine: opportunities and challenges

    Get PDF
    Nanotechnology has resulted in materials that have greatly improved the effectiveness of drug delivery because of their ability to control matter on the nanoscale. Advanced forms of nanomedicine have been synthesized for better pharmacokinetics to obtain higher efficacy, less systemic toxicity, and better targeting. These criteria have long been the goal in nanomedicine, in particular, for systemic applications in oncological disorders. Now, the “holy grail” in nanomedicine is to design and synthesize new advanced macromolecular nanocarriers and to translate them from lab to clinic. This review describes the current and future perspectives of nanomedicine with particular emphasis on the clinical targets in cancer and inflammation. The advanced forms of liposomes and polyethylene glycol (PEG) based nanocarriers, as well as dendritic polymer conjugates will be discussed with particular attention paid to designs, synthetic strategies, and chemical pathways. In this critical review, we also report on the current status and perspective of dendritic polymer nanoconjugate platforms (e.g. polyamidoamine dendrimers and dendritic polyglycerols) for cellular localization and targeting of specific tissues (192 references)

    Linear angular momentum multiplexing-conceptualization and experimental evaluation with antenna arrays

    Get PDF
    Linear Angular Momentum Multiplexing is a new method for providing highly spectrally efficient short range communication between a transmitter and receiver, where one may move at speed transverse to the propagation. Such applications include rail, vehicle and hyperloop transport systems communicating with fixed infrastructure on the ground. This paper describes how the scientific concept of linear angular momentum multiplexing evolves from orbital angular momentum multiplexing. The essential parameters for implementing this concept are: a long array at least at one of the ends of the link; antenna element radiation characteristics; and the array element spacing relative to the propagation distance. These parameters are also backed by short range measurements carried out at 2.4GHz used to model the Rice fading channel and determine resilience to multipath fading

    The therapeutic potential of the filarial nematode-derived immunodulator, ES-62 in inflammatory disease

    Get PDF
    The dramatic recent rise in the incidence of allergic or autoimmune inflammatory diseases in the West has been proposed to reflect the lack of appropriate priming of the immune response by infectious agents such as parasitic worms during childhood. Consistent with this, there is increasing evidence supporting an inverse relationship between worm infection and T helper type 1/17 (Th1/17)-based inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes and multiple sclerosis. Perhaps more surprisingly, given that such worms often induce strong Th2-type immune responses, there also appears to be an inverse correlation between parasite load and atopy. These findings therefore suggest that the co-evolution of helminths with hosts, which has resulted in the ability of worms to modulate inflammatory responses to promote parasite survival, has also produced the benefit of protecting the host from pathological lesions arising from aggressive proinflammatory responses to infection or, indeed, aberrant inflammatory responses underlying autoimmune and allergic disorders. By focusing upon the properties of the filarial nematode-derived immunomodulatory molecule, ES-62, in this review we shall discuss the potential of exploiting the immunomodulatory products of parasitic worms to identify and develop novel therapeutics for inflammation

    High field strength magnetic resonance imaging in children

    No full text

    Linear Angular Momentum Multiplexing – Conceptualisation and Experimental Evaluation with Antenna Arrays

    Get PDF
    Linear Angular Momentum Multiplexing is a new method for providing highly spectrally efficient short range communication between a transmitter and receiver, where one may move at speed transverse to the propagation. Such applications include rail, vehicle and hyperloop transport systems communicating with fixed infrastructure on the ground. This paper describes how the scientific concept of linear angular momentum multiplexing evolves from orbital angular momentum multiplexing. The essential parameters for implementing this concept are: a long array at least at one of the ends of the link; antenna element radiation characteristics; and the array element spacing relative to the propagation distance. These parameters are also backed by short range measurements carried out at 2.4GHz used to model the Rice fading channel and determine resilience to multipath fading
    corecore