21 research outputs found

    Explorations, Vol. 3, No. 3

    Get PDF
    Cover: Artwork by Marcia Spencer, University of Maine art student. Articles include: Characterization of Normal and Carcinogen Induced Neoplastic Cells of Teleost Origin, by Tim Lyden Attitutdes and Opinions of Maine Dairy Farmers, by John Muth and James Leiby Background: the quest for the eighteen month oyster, by Kevin Scully The Quest for the Eighteen Month Oyster, by Kevin Scully Measurement of Surface Tension of Kraft Black Liquor, by Jayalakshmi Jaya Krishnagopalan From the former student, by Jayalakshmi Krishnagopalan From the faculty advisor, by Ivar H. Stockel Aquatic Fungal Decomposers in Two Adjacent Maine Lakes of Different Acidity, by Peter Wagner Studies on a New Mouse Mutation, by Luanne L. Peters Opportunities for Students: Maine Agricultural Experiment Station Research Programs, by Mark W. Anderson Experimental Embryogenesis in Red Pine, by Judy C. Gates The V-Notched Lobster in Maine, by Cheryl Waltz Undernutrition in a Pediatric Population, by Paula Quatromoni From the Advisor Archaeology of the Central Maine Coast, by Douglas Kellogg Marketing Strategies for Computer Consultants in Small Business, by Kimberly Dagher Our Cover Artist From the Advisor, by James Lineha

    Genetic Variants Contributing to Colistin Cytotoxicity: Identification of TGIF1 and HOXD10 Using a Population Genomics Approach

    Get PDF
    Colistin sulfate (polymixin E) is an antibiotic prescribed with increasing frequency for severe Gram-negative bacterial infections. As nephrotoxicity is a common side effect, the discovery of pharmacogenomic markers associated with toxicity would benefit the utility of this drug. Our objective was to identify genetic markers of colistin cytotoxicity that were also associated with expression of key proteins using an unbiased, whole genome approach and further evaluate the functional significance in renal cell lines. To this end, we employed International HapMap lymphoblastoid cell lines (LCLs) of Yoruban ancestry with known genetic information to perform a genome-wide association study (GWAS) with cellular sensitivity to colistin. Further association studies revealed that single nucleotide polymorphisms (SNPs) associated with gene expression and protein expression were significantly enriched in SNPs associated with cytotoxicity (p ≤ 0.001 for gene and p = 0.015 for protein expression). The most highly associated SNP, chr18:3417240 (p = 6.49 × 10−8), was nominally a cis-expression quantitative trait locus (eQTL) of the gene TGIF1 (transforming growth factor β (TGFβ)-induced factor-1; p = 0.021) and was associated with expression of the protein HOXD10 (homeobox protein D10; p = 7.17 × 10−5). To demonstrate functional relevance in a murine colistin nephrotoxicity model, HOXD10 immunohistochemistry revealed upregulated protein expression independent of mRNA expression in response to colistin administration. Knockdown of TGIF1 resulted in decreased protein expression of HOXD10 and increased resistance to colistin cytotoxicity. Furthermore, knockdown of HOXD10 in renal cells also resulted in increased resistance to colistin cytotoxicity, supporting the physiological relevance of the initial genomic associations

    Interindividual Variability in Lymphocyte Stimulation and Transcriptomic Response Predicts Mycophenolic Acid Sensitivity in Healthy Volunteers

    Get PDF
    Mycophenolic acid (MPA) is an immunosuppressant commonly used to prevent renal transplant rejection and treat glomerulonephritis. MPA inhibits IMPDH2 within stimulated lymphocytes, reducing guanosine synthesis. Despite the widespread use of MPA, interindividual variability in response remains with rates of allograft rejection up to 15% and approximately half of individuals fail to achieve complete remission to lupus nephritis. We sought to identify contributors to interindividual variability in MPA response, hypothesizing that the HPRT1 salvage guanosine synthesis contributes to variability. MPA sensitivity was measured in 40 healthy individuals using an ex vivo lymphocyte viability assay. Measurement of candidate gene expression (n ± 40) and single‐cell RNA‐sequencing (n ± 6) in lymphocytes was performed at baseline, poststimulation, and post‐MPA treatment. After stimulation, HPRT1 expression was 2.1‐fold higher in resistant individuals compared with sensitive individuals (P ± 0.049). Knockdown of HPRT1 increased MPA sensitivity (12%; P ± 0.003), consistent with higher expression levels in resistant individuals. Sensitive individuals had higher IMPDH2 expression and 132% greater stimulation. In lymphocyte subpopulations, differentially expressed genes between sensitive and resistant individuals included KLF2 and LTB. Knockdown of KLF2 and LTB aligned with the predicted direction of effect on proliferation. In sensitive individuals, more frequent receptor‐ligand interactions were observed after stimulation (P ± 0.0004), but fewer interactions remained after MPA treatment (P ± 0.0014). These data identify a polygenic transcriptomic signature in lymphocyte subpopulations predictive of MPA response. The degree of lymphocyte stimulation, HPRT1, KLF2, and LTB expression may serve as markers of MPA efficacy

    The orchestrated cellular and molecular responses of the kidney to endotoxin define a precise sepsis timeline

    Get PDF
    Sepsis is a dynamic state that progresses at variable rates and has life-threatening consequences. Staging patients along the sepsis timeline requires a thorough knowledge of the evolution of cellular and molecular events at the tissue level. Here, we investigated the kidney, an organ central to the pathophysiology of sepsis. Single-cell RNA-sequencing in a murine endotoxemia model revealed the involvement of various cell populations to be temporally organized and highly orchestrated. Endothelial and stromal cells were the first responders. At later time points, epithelial cells upregulated immune-related pathways while concomitantly downregulating physiological functions such as solute homeostasis. Sixteen hours after endotoxin, there was global cell-cell communication failure and organ shutdown. Despite this apparent organ paralysis, upstream regulatory analysis showed significant activity in pathways involved in healing and recovery. This rigorous spatial and temporal definition of murine endotoxemia will uncover precise biomarkers and targets that can help stage and treat human sepsis

    Molecular characterization of the human kidney interstitium in health and disease

    Get PDF
    The gene expression signature of the human kidney interstitium is incompletely understood. The cortical interstitium (excluding tubules, glomeruli, and vessels) in reference nephrectomies (N = 9) and diabetic kidney biopsy specimens (N = 6) was laser microdissected (LMD) and sequenced. Samples underwent RNA sequencing. Gene signatures were deconvolved using single nuclear RNA sequencing (snRNAseq) data derived from overlapping specimens. Interstitial LMD transcriptomics uncovered previously unidentified markers including KISS1, validated with in situ hybridization. LMD transcriptomics and snRNAseq revealed strong correlation of gene expression within corresponding kidney regions. Relevant enriched interstitial pathways included G-protein coupled receptor. binding and collagen biosynthesis. The diabetic interstitium was enriched for extracellular matrix organization and small-molecule catabolism. Cell type markers with unchanged expression (NOTCH3, EGFR, and HEG1) and those down-regulated in diabetic nephropathy (MYH11, LUM, and CCDC3) were identified. LMD transcriptomics complements snRNAseq; together, they facilitate mapping of interstitial marker genes to aid interpretation of pathophysiology in precision medicine studies

    Integration of spatial and single-cell transcriptomics localizes epithelial cell–immune cross-talk in kidney injury

    Get PDF
    Single-cell sequencing studies have characterized the transcriptomic signature of cell types within the kidney. However, the spatial distribution of acute kidney injury (AKI) is regional and affects cells heterogeneously. We first optimized coordination of spatial transcriptomics and single-nuclear sequencing data sets, mapping 30 dominant cell types to a human nephrectomy. The predicted cell-type spots corresponded with the underlying histopathology. To study the implications of AKI on transcript expression, we then characterized the spatial transcriptomic signature of 2 murine AKI models: ischemia/reperfusion injury (IRI) and cecal ligation puncture (CLP). Localized regions of reduced overall expression were associated with injury pathways. Using single-cell sequencing, we deconvoluted the signature of each spatial transcriptomic spot, identifying patterns of colocalization between immune and epithelial cells. Neutrophils infiltrated the renal medulla in the ischemia model. Atf3 was identified as a chemotactic factor in S3 proximal tubules. In the CLP model, infiltrating macrophages dominated the outer cortical signature, and Mdk was identified as a corresponding chemotactic factor. The regional distribution of these immune cells was validated with multiplexed CO-Detection by indEXing (CODEX) immunofluorescence. Spatial transcriptomic sequencing complemented single-cell sequencing by uncovering mechanisms driving immune cell infiltration and detection of relevant cell subpopulations

    In Vivo siRNA Delivery and Rebound of Renal LRP2 in Mice

    Get PDF
    siRNA stabilized for in vivo applications is filtered and reabsorbed in the renal proximal tubule (PT), reducing mRNA expression transiently. Prior siRNA efforts have successfully prevented upregulation of mRNA in response to injury. We proposed reducing constitutive gene and protein expression of LRP2 (megalin) in order to understand its molecular regulation in mice. Using siRNA targeting mouse LRP2 (siLRP2), reduction of LRP2 mRNA expression was compared to scrambled siRNA (siSCR) in mouse PT cells. Mice received siLRP2 administration optimized for dose, administration site, carrier solution, administration frequency, and administration duration. Kidney cortex was collected upon sacrifice. Renal gene and protein expression were compared by qRT-PCR, immunoblot, and immunohistochemistry (IHC). Compared to siSCR, siLRP2 reduced mRNA expression in PT cells to 16.6%±0.6%. In mouse kidney cortex, siLRP2 reduced mRNA expression to 74.8 ± 6.3% 3 h and 70.1 ± 6.3% 6 h after administration. mRNA expression rebounded at 12 h (160.6 ± 11.2%). No megalin renal protein expression reduction was observed by immunoblot or IHC, even after serial twice daily dosing for 3.5 days. Megalin is a constitutively expressed protein. Although LRP2 renal mRNA expression reduction was achieved, siRNA remains a costly and inefficient intervention to reduce in vivo megalin protein expression
    corecore