813 research outputs found

    CampProf: A Visual Performance Analysis Tool for Memory Bound GPU Kernels

    Get PDF
    Current GPU tools and performance models provide some common architectural insights that guide the programmers to write optimal code. We challenge these performance models, by modeling and analyzing a lesser known, but very severe performance pitfall, called 'Partition Camping', in NVIDIA GPUs. Partition Camping is caused by memory accesses that are skewed towards a subset of the available memory partitions, which may degrade the performance of memory-bound CUDA kernels by up to seven-times. No existing tool can detect the partition camping effect in CUDA kernels. We complement the existing tools by developing 'CampProf', a spreadsheet based, visual analysis tool, that detects the degree to which any memory-bound kernel suffers from partition camping. In addition, CampProf also predicts the kernel's performance at all execution configurations, if its performance parameters are known at any one of them. To demonstrate the utility of CampProf, we analyze three different applications using our tool, and demonstrate how it can be used to discover partition camping. We also demonstrate how CampProf can be used to monitor the performance improvements in the kernels, as the partition camping effect is being removed. The performance model that drives CampProf was developed by applying multiple linear regression techniques over a set of specific micro-benchmarks that simulated the partition camping behavior. Our results show that the geometric mean of errors in our prediction model is within 12% of the actual execution times. In summary, CampProf is a new, accurate, and easy-to-use tool that can be used in conjunction with the existing tools to analyze and improve the overall performance of memory-bound CUDA kernels

    k-d Tree-Segmented Block Truncation Coding for Image Compression

    Get PDF
    Block truncation coding (BTC) is a class of image compression algorithms whose main technique is the partitioning of an image into pixel blocks that are then each encoded using a representative set of pixel values. It is commonly used because of its simplicity and low computational complexity. The Quadtree-segmented BTC (QTS-BTC), which utilizes a dynamic hierarchical segmentation technique, is among the most efficient in the BTC class. In this study, we propose a new BTC variant that introduces two ideas: (1) the use of a k-d tree for segmentation and (2) the use of a Mean Squared Error (MSE) threshold for dynamically determining the granularity of the blocks. We refer to this new BTC variant as the k-d Tree Segmented BTC (KTS-BTC), and we test this against some of the existing BTC variants by running the algorithms on a standard image compression dataset. The results show that the proposed variant yields low bit rates of the compressed images, even outperforming the state-of-the-art QTS-BTC, without a significant reduction in image quality as measured using the Peak Signal-to-Noise Ratio (PSNR). The utilization of k-d tree for image segmentation is further shown to have more impact than that of employing the MSE thresholding scheme as a block activity classifier

    Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool

    Get PDF
    In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows) and the connected deformation processes. The ability to obtain accurate quantitative data of definite accuracy in short time spans makes digital photogrammetry a suitable method for controlling the evolution of rapidly changing large-area volcanic phenomena. The systematic acquisition of airborne photogrammetric datasets can be adopted for implementing a more effective procedure aimed at long-term volcano monitoring and hazard assessment. In addition, during the volcanic crisis, the frequent acquisition of oblique digital images from helicopter allows for quasi-real-time monitoring to support mitigation actions by civil protection. These images are commonly used to update existing maps through a photo-interpretation approach that provide data of unknown accuracy. This work presents a scientific tool (Orthoview) that implements a straightforward photogrammetric approach to generate digital orthophotos from single-view oblique images provided that at least four Ground Control Points (GCP) and current Digital Elevation Models (DEM) are available. The influence of the view geometry, of sparse and not-signalized GCP and DEM inaccuracies is analyzed for evaluating the performance of the developed tool in comparison with other remote sensing techniques. Results obtained with datasets from Etna and Stromboli volcanoes demonstrate that 2D features measured on the produced orthophotos can reach sub-meter-level accuracy

    The MicroBioDiverSar Project: Exploring the Microbial Biodiversity in Ex Situ Collections of Sardinia

    Get PDF
    In the last decades, biodiversity preservation has gained growing attention and many strategies, laws and regulations have been enacted by governments with this purpose. The Micro-BioDiverSar (MBDS) project, the first one regarding microbiological resources, funded by the Italian Minister of Agricultural, Food and Forestry Policies (Mipaaf) through the Law 194/2015, was aimed at surveying, cataloguing, and managing the microbial resources and the related information of three Sardinian collections (Agris BNSS, Uniss, and Unica). While microorganisms were reordered and inventoried, a federated database, accessible via the web, was designed by the bioinformatician of Ospedale Policlinico San Martino of Genova, according to both international standards and laboratory needs. The resulting MBDS collection boasts a great richness of microbial resources. Indeed, over 21,000 isolates, belonging to over 200 species of bacteria, yeasts, and filamentous fungi isolated from different matrices, mainly food, of animal and vegetable origin, collected in over 50 years, were included in the database. Currently, about 2000 isolates, belonging to 150 species, are available online for both the scientific community and agri-food producers. The huge work done allowed one to know the consistency and the composition of most of the patrimony of the Sardinian microbial collections. Furthermore, the MBDS database has been proposed as a model for other Italian collections that, as the MBDS partners, are part of the Joint Research UnitMIRRI-IT Italian collections network, with the aim of overcoming fragmentation, facing sustainability challenges, and improving the quality of the management of the collections
    • …
    corecore