
CampProf: A Visual Performance Analysis Tool for
Memory Bound GPU Kernels

Ashwin M. Aji, Mayank Daga, Wu-chun Feng
Dept. of Computer Science

Virginia Tech
Blacksburg, USA

{aaji, mdaga, feng}@cs.vt.edu

Abstract—Current GPU tools and performance models provide
some common architectural insights that guide the programmers
to write optimal code. We challenge these performance models,
by modeling and analyzing a lesser known, but very severe
performance pitfall, called ‘Partition Camping’, in NVIDIA
GPUs. Partition Camping is caused by memory accesses that
are skewed towards a subset of the available memory partitions,
which may degrade the performance of memory-bound CUDA
kernels by up to seven-times. No existing tool can detect the
partition camping effect in CUDA kernels.

We complement the existing tools by developing ‘CampProf’, a
spreadsheet based, visual analysis tool, that detects the degree to
which any memory-bound kernel suffers from partition camping.
In addition, CampProf also predicts the kernel’s performance
at all execution configurations, if its performance parameters
are known at any one of them. To demonstrate the utility of
CampProf, we analyze three different applications using our
tool, and demonstrate how it can be used to discover partition
camping. We also demonstrate how CampProf can be used to
monitor the performance improvements in the kernels, as the
partition camping effect is being removed.

The performance model that drives CampProf was developed
by applying multiple linear regression techniques over a set of
specific micro-benchmarks that simulated the partition camping
behavior. Our results show that the geometric mean of errors in
our prediction model is within 12% of the actual execution times.
In summary, CampProf is a new, accurate, and easy-to-use tool
that can be used in conjunction with the existing tools to analyze
and improve the overall performance of memory-bound CUDA
kernels.

Keywords-CUDA; Partition Camping; Analysis; Optimization;
NVIDIA GPU’s

I. INTRODUCTION

Graphics Processing Units (GPUs) are being increasingly
adopted by the high-performance computing (HPC) com-
munity due to their remarkable performance-price ratio, but
a thorough understanding of the underlying architecture is
still needed to optimize the GPU-accelerated applications [1].
Several performance models have recently been developed
to study the organization of the GPU and accurately predict
the performance of the GPU-kernels [2]–[5]. Our paper chal-
lenges and complements the existing performance models, by
modeling and analyzing a lesser known but extremely severe
performance pitfall, called Partition Camping, in NVIDIA
GPUs.

Partition Camping is caused by memory accesses that are
skewed towards a subset of the available memory partitions,

which may severely affect the performance of memory-bound
CUDA kernels [6], [7]. Our studies show that the performance
can degrade by up to seven-times because of partition camp-
ing (Figure 3). While common optimization techniques for
NVIDIA GPUs have been widely studied, and many tools
and models guide programmers to perform common intra-
block optimizations, neither the current performance models
nor existing tools can discover the partition camping effect in
CUDA kernels.

We develop CampProf, which is a new, easy-to-use, and a
spreadsheet based visual analysis tool for detecting partition
camping effects in memory-bound CUDA kernels. The tool
takes the kernel execution time and the number of memory
transactions of any one kernel configuration as the input, and
displays a range of execution times for all the other kernel
configurations (Figure 1). The upper and lower bounds indicate
the performance levels with and without the partition camping
problem respectively. The relative position of the actual execu-
tion time with respect to the performance range will show the
degree to which the partition camping problem exists in the
kernel. In addition, CampProf also predicts the exact execution
times of the kernel at all the other execution configurations.
We recommend CampProf to be used in conjunction with the
other existing tools, like CUDA Occupancy Calculator [8] and
CUDA Visual Profiler (CudaProf) [9], to analyze the overall
performance of memory-bound CUDA applications.

CampProf uses a performance prediction model, which we
developed by first creating several micro-benchmarks that cap-
tured the performance of all the different memory transaction
types, with and without the partition camping behavior. Based
on the execution times of the micro-benchmarks and the dif-
ferent memory transactions, we used multiple linear regression
to model the performance range of actual CUDA kernels. To
demonstrate the utility of CampProf in real applications, we
analyze three very different memory-bound CUDA kernels,
and show how our tool and model can be used to discover
the partition camping problem. We also demonstrate how the
tool can be used to monitor the performance of the kernel,
where the execution time progresses towards the best case
after the partition camping effect has been reduced. Also, we
show that our performance prediction model has a geometric
mean error of less than 12% when validated against the actual
kernel execution times.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10676244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

E
x
e

c
u

ti
o

n
 T

im
e

Actual Kernel Running Time

Extrapolated Kernel Time

E
x
e

c
u

ti
o

n
 T

im
e

Active Warps per SM

Worst Case (With Partition Camping)

Extrapolated

Best Case (Without Partition Camping)

Degree of Partition Camping

Fig. 1. Conceptual Output Chart of CampProf.

The rest of this paper is organized as follows: Section II
provides background on the NVIDIA GPU, the CUDA archi-
tecture and the partition camping problem. Section III presents
the related work. Section IV described the CampProf tool in
detail, followed by performance modeling techniques using
micro-benchmarks and statistical analysis tools. Section V
explains the experimental setup. Section VI discusses the
experimental results. Section VII concludes the paper and
proposes some future work.

II. BACKGROUND ON THE NVIDIA GPUS

In this section, we explain the basic architecture of the
general NVIDIA GPU, the CUDA programming model, com-
mon optimization techniques and the lesser known partition
camping problem.

A. The NVIDIA GPUs and CUDA

The NVIDIA GPU (or device) consists of a set of Single
Instruction Multiple Data (SIMD) streaming multiprocessors
(SMs), where each SM consists of eight scalar processor
(SP) cores, two special function units and a double precision
processing unit with a multi-threaded instruction unit. The
actual number of SMs vary depending on the different GPU
models.

The SMs on the GPU can simultaneously access the device
memory, which consists of read-write global memory, 64 KB
of read-only constant memory and read-only texture memory.
However, all the device memory modules can be read or
written to by the host processor. Each SM has on-chip memory,
which can be accessed by all the SPs within the SM and will
be one of the following four types: a set of registers; 16 KB
of ‘shared memory’, which is a software-managed data cache;
a read-only constant memory cache; and a read-only texture
memory cache. The global memory space is not cached by the
device.

CUDA (Compute Unified Device Architecture) [6] is the
parallel programming model and software environment pro-
vided by NVIDIA to run applications on their GPUs, pro-

grammed via simple extensions to the C programming lan-
guage. CUDA follows a code off-loading model, i.e. data-
parallel, compute-intensive portions of applications running on
the host processor are typically off-loaded onto the device. The
kernel is the portion of the program that is compiled to the
instruction set of the device and then off-loaded to the device
before execution.

Execution Configuration of a CUDA Kernel: The threads
in the kernel are hierarchically ordered as a logical grid of
thread blocks, and the CUDA thread scheduler will schedule
the blocks for execution on the SMs. When executing a block
on the SM, CUDA splits the block into groups of 32-threads
called warps, where the entire warp executes one common
instruction at a time. CUDA schedules blocks (or warps) on
the SMs in batches, and not all together, due to register and
shared memory resource constraints. The blocks (or warps) in
the current batch are called the active blocks (or warps) per
SM. The CUDA thread scheduler treats all the active blocks of
an SM as a unified set of active warps ready to be scheduled
for execution. In this way, CUDA hides the memory access
latency of one warp by scheduling another active warp for
execution [6], [7]. In short, a kernel with an arbitrary number
of blocks will perform only as good as the kernel with a
configuration equal to set of active warps. In this paper, we
have chosen ‘active warps per SM’ as the metric to describe
the execution configuration of any kernel, because it is much
simpler to be represented in only a single dimension.

There are some hardware restrictions imposed on the
NVIDIA GPUs with compute capability 1.3 that limits the
possible number of active warps that can be scheduled on each
SM. The warp size for the current GPUs is 32 threads. The
maximum number of active threads per multiprocessor can
be 1024, which means that the maximum number of active
warps per SM is 32. Also, the maximum number of threads
in a block is 512, and the maximum number of active blocks
per multiprocessor is 8 [6]. Due to a combination of these
restrictions, the number of active warps per SM can range
anywhere from 1 to 16, followed by even-numbered warps
from 18 to 32.

B. The Partition Camping Problem

Optimization techniques for NVIDIA GPUs have been
widely studied, and many proprietary tools, like CUDA Visual
Profiler (CudaProf) and the CUDA Occupancy Calculator
spreadsheet tool, guide programmers to perform common
intra-block optimizations. These include optimizing arithmetic
instruction throughput, efficiently accessing global memory,
and avoiding bank conflicts in shared memory. In this pa-
per, we study a lesser known performance pitfall, which
NVIDIA calls ‘partition camping’, where memory requests
across blocks get serialized by fewer memory controllers on
the graphics card (Figure 2). Just as shared memory is divided
into multiple banks, global memory is divided into either
6 partitions (on 8- and 9-series GPUs) or 8 partitions (on
200- and 10-series GPUs) of 256-byte width. The partition
camping problem is similar to shared memory bank conflicts,

!"# !$# !%# !&# !'# !(# !)# !*#

!"#$% !"#&% !"#'% !"#(% !"#)% !"#*% !"#+% !"#,%

!"#-% !"#$.% !"#$$% !"#$&% !"#$'% !"#$(% !"#$)% !"#$*%

!"#$+% !"#$,% !"#$-% !"#&.% !"#&$% !"#&&% !"#&'% !"#&(%

!"#&)% !"#&*% !"#&+% !"#&,% !"#&-% !"#'.%

!"# !$# !%# !&# !'# !(# !)# !*#

!"#$%

!"#&%

!"#&-%

!"#'.%

!"#$% !"#&% !"#'% !"#(% !"#&-% !"#'.%

"/0123%455/66/6%
789:1;9%<=2>>1?%@=0A8?B%

789:%<=2>>1?%@=0A8?B%

C
%

D
<E

%D
F1G=F%"

/0
123%

D<E%HI/5;>1?%E?896%

Fig. 2. Partition Camping effect in 200- and 10-series NVIDIA GPUs. Note:
The column Pi denotes the ith partition.

0	

1	

2	

3	

4	

5	

6	

7	

8	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	

Pe
rf
or
m
an

ce
	
 Im

pa
ct
	
 (x
-­‐1
m
es
)	

Ac1ve	
 Warps	
 per	
 SM	

Effect	
 of	
 Par11on	
 Camping	

Fig. 3. Partition Camping in Micro-Benchmark

but experienced at a macro-level where concurrent global
memory accesses by all the active warps in the kernel occur
at a subset of partitions, causing requests to queue up at
some partitions while other partitions go unused [7]. Our
micro-benchmarks simulate the partition camping effect; one
benchmark accesses the memory uniformly while the other
accesses just one partition of the memory. They reveal that the
performance of memory-bound kernels can degrade by up to
seven-times if memory request suffer from partition camping,
as shown in Figure 3.

Discovery of the partition camping problem in CUDA
kernels is a difficult problem. There is existing literature on
static code analysis for detecting bank conflicts in shared
memory [10], but the same logic cannot be extended to
detecting the partition camping problem. Bank conflicts in
shared memory occur among threads in a warp, where all the
threads share the same clock, and an analysis of the accessed
address alone is sufficient to detect conflicts. However, the
partition camping problem occurs when multiple active warps
queue up behind the same partition and at the same time.
This means that a static analysis of just the partition number
of each memory transaction is not sufficient, and its timing

information should also be analyzed. Each SM has its own
private clock, which makes the discovery of this problem much
more difficult and error prone. To the best of our knowledge,
there are no tools that can diagnose the partition camping
problem in CUDA kernels.

III. RELATED WORK

There have been analytical models developed to help the
programmer understand bottlenecks and achieve optimum per-
formance on the GPU. In [2], Baghsorkhi et al. have developed
a compiler front end which analyses the kernel source code
and translates it into a Program Dependence Graph (PDG)
which is useful for performance evaluation. The PDG allows
them to identify computationally related operations which are
the dominant factors affecting the kernel execution time. With
the use of symbolic evaluation, they are able to estimate the
effects of branching, coalescing and bank conflicts in the
shared memory.

In [3], Hong et al. propose an analytical model which dwells
upon the idea that the execution of any kernel is bottlenecked
by the latency of memory instructions and multiple memory
instructions are executed to successfully hide this latency.
Hence, calculating the number of parallel memory operations
(memory warp parallelism) would enable them to accurately
predict performance. Their model relies upon the analysis of
the intermediate PTX code generated by the CUDA compiler.
However, the PTX is just an intermediate representation which
is further optimized to run on the GPU [11]. PTX not
being a good representation of the actual machine instructions
introduces some error in their prediction model.

Recently Ryoo et al. proposed two metrics; efficiency and
utilization to prune the optimization space of general purpose
applications on the GPU [12]. Their model, however, does
not work for memory bound kernels. Boyer et al. present
an automated analysis technique to detect race conditions
and bank conflicts in a CUDA program. They do so by
instrumenting the program to track the memory locations
accessed which is done by analyzing the PTX code [10]. Schaa
et al. focus on the prediction of execution time for a multi-GPU
system, knowing the time for execution on a single GPU [13].
They do so by introducing models for each component of the
multi-GPU system; the GPU execution, PCI-Express and the
RAM and the Disk.

Micro-benchmarks have been extensively used to reveal
the architectural details of the GPUs. In [14], Volkov et al.
benchmark the GPUs to tune dense linear algebra. They cre-
ated detailed benchmarks to reveal the kernel bottlenecks like
access patterns of the GPU Shared memory and kernel launch
overhead. Their benchmarks also portrayed the structure of the
GPU memory system including the access latencies. Wong
et al. also use micro-benchmarks to understand the micro-
architecture of the GT200 GPU, the one used in this current
work [4]. Both these works, used decuda which is a disassem-
bler for NVIDIA’s machine level instructions, to understand
the mapping of various instructions on the GPU [15].

Fig. 4. CampProf: Screenshot

In [5], Hong et al. propose an Integrated Power and
Performance Model for GPUs where they use intuition that
once an application reaches the optimum memory bandwidth,
increasing the number of cores would not help the performance
of the application and hence, power can be saved by switching
off the additional cores of the GPU. Nagasaka et al. make
use of statistical tools like regression analysis and CudaProf
counters for power modeling on the GPU [16]. Their approach
is very similar to ours, however, they model power and we
model performance. Bader et al. have developed automated
libraries for data re-arrangement to explicitly reduce partition
camping problem in the kernels [17].

In the present work, we develop a performance model which
reveals the extent of partition camping in an application as well
as predict the execution time for all kernel configurations if the
time for one configuration is provided. Micro-benchmarks and
multiple linear regression formed the basis of our model. We
simplify performance prediction by developing a spreadsheet
like tool which takes CudaProf counters as input parameters
and envisions the worst and best possible execution times for
any memory bound application.

IV. PERFORMANCE PREDICTION WITH CAMPPROF

In this section, we first describe CampProf and its several
utilities at a high level, and also mention the class of CUDA
kernels that can benefit from this tool. Next, we show how
we have used micro-benchmarks and statistical analysis tools
to develop CampProf. We then discuss how our ideas can be
applied to develop similar tools for the newer GPU architec-
tures.

A. Overview

CampProf is the visual analysis tool that we have developed,
and it offers the following utilities to the programmer of
memory bound CUDA kernels –

1) Partition Camping Detection: CampProf takes the kernel
execution time, and the number of memory transactions
of any one kernel configuration as inputs, and displays a
range of execution times for all the other kernel config-
urations. The bounds range from the best case running
times (assuming no partition camping) to the worst case
running times (assuming partition camping). The relative
position of the actual execution time with respect to
the performance range will show the degree to which
the partition camping problem exists in the kernel. This
is in contrast to the other existing performance models
that predict just a single kernel execution time, but those
models can be applied only to the kernels that are known
to not suffer from partition camping. By detecting the
effect of partition camping, the programmer can estimate
the target for performance improvement, if the memory
access patterns in the kernel are carefully managed. We
are not aware of any tool that provides this utility.

2) Performance Prediction: In addition to the previous
utility, CampProf inputs the actual execution time and
the execution configuration of the given kernel, and
predicts the exact running times of the same kernel at
all the other execution configurations.

Note that CampProf provides insights into this largely ig-
nored partition camping problem, and not the other com-
mon performance pitfalls that the CUDA programming
guide describes, like non-coalesced global memory ac-
cesses, shared memory bank conflicts, low arithmetic inten-
sity, etc. The performance counter values from the Cud-
aProf [9] tool (gld_32/64/128b, gst_32/64/128b,
instructions, warp serialize (for bank conflicts
in shared memory), etc) can be used to understand and
optimize the common performance bottle-necks of the kernel.
However, these values describe the kernel’s behavior either
within a single SM or a single TPC (depending on the profiler
counter), and does not provide any details of the overall
system. On the other hand, CampProf helps understand the
memory access patterns among all the active warps in the
entire kernel. We recommend CampProf to be used by the
CUDA programmer along with CudaProf and the CUDA
Occupancy Calculator, to tune their program to the optimum.

CUDA Kernel Classification: We now categorize the
CUDA kernels into two general groups and describe the class
of kernels that CampProf supports. We classify CUDA kernels
as either being compute-bound or memory-bound. Compute-
bound kernels typically have a high arithmetic intensity, and so
most of the memory transactions by the warps take negligible
time when compared to the overall kernel time, i.e. most of
the memory transactions are hidden by other active warps
being scheduled for execution on the SM by the CUDA
thread scheduler. On the other hand, memory-bound kernels
have low arithmetic intensity, where the kernel’s execution
time is mainly dominated by the memory accesses. The core
computations are negligible and will be mostly hidden by the
active warps that are accessing the memory [6]. The partition
camping problem significantly affects the performance of the

kernel’s memory transactions, which mainly affects memory-
bound kernels. So, CampProf can be used to analyze all the
memory-bound CUDA kernels.

But, how do we determine if a kernel is memory or compute-
bound? Our solution is to analyze trends in the kernel execu-
tion time when the GPU’s core-clock and memory frequencies
are changed. If the execution time varies significantly when the
core-clock frequency is changed, then the kernel is likely to
be compute-bound. On the other hand, if there is a significant
change in the running time when the memory frequencies
are varied, then the kernel is likely to be memory-bound.
It is hard to strictly classify a kernel as compute-bound or
memory-bound, and some kernels can be a bit of both. We
will show in Section V-B that the performance of our case-
study applications shows significant changes when the memory
frequency of the GPU card is changed from 800MHz to
1300MHz, and so can be considered to be memory-bound
kernels and good candidates for our experiments. We also
realize that our tool cannot be used to analyze the partition
camping effects in kernels that are not memory-bound. But,
in such cases, the effect of memory transactions will not even
be significant when compared to the total execution time of
the kernel.

The CampProf Tool: CampProf is a spreadsheet tool sim-
ilar to the CUDA Occupancy Calculator [8] and its screenshot
is shown in Figure 4. The spreadsheet consists of some input
fields and the output chart, which shows the partition camping
effects. The inputs to CampProf are the following values that
can be easily obtained from the CudaProf and the CUDA
Occupancy Calculator tools: gld 32b/64b/128b, gst
32b/64b/128b, grid and block sizes, and active warps per
SM. The active warps per SM is obtained from the Occupancy
Calculator, and it depends on the shared memory usage per
block, registers per thread and threads per block. Note that
inputs from just a single set of threads and blocks are enough
for CampProf to predict the kernel’s performance range for
any other execution configuration. We deviate from the other
static analysis work that has been done so far in this field,
but provide more realistic performance estimates. CampProf
passes the input values to our performance model, which is
a multiple linear regression model, which then generates the
following two sets of predicted execution times for all the
possible kernel execution configurations1 – (1) best case, as-
suming that all the memory transactions by the system’s active
warps are uniformly distributed amongst the available memory
partitions, and there is no partition camping, and (2) worst
case, if all the active warps access the same memory partition,
which leads to the partition camping problem. CampProf then
plots these two sets of predicted execution times as two lines
in a chart in the spreadsheet. The best and worst case execution
times form a band between which the actual execution time
lies.

To detect the partition camping problem in the kernel, the

1As mentioned in Section II-B, the ‘number of active warps per SM’ is our
chosen metric of kernel configuration.

user can simply collect the actual kernel execution time (GPU
Time from CudaProf) for the same set of input parameters,
and compare it with CampProf’s execution band. If the actual
running time is almost touching the worst case line, it means
that all the memory transactions of the kernel (reads and
writes of all sizes) are partition camped, and the warps of
the kernel should be re-mapped to the data to avoid this
effect. Likewise, the kernel is considered to be optimized with
respect to partition camping if the actual execution time is
very close to the lower best case line. If the actual running
time is somewhere in the middle of the two lines, it means
that performance can be potentially improved, and there is a
subset of memory transactions (reads or writes) that is queuing
up behind the same partition. For example, while processing
two matrices, the kernel might read one matrix in the row
major format (has no partition camping) and the other matrix
might be read or written into in the column major format (has
partition camping). This means that only a part of the kernel
suffers from camping, and the actual execution time will lie
somewhere between the two extremities of CampProf’s exe-
cution band. Detailed results will be explained in Section VI.
The only remedy to the partition camping problem is careful
analysis of the CUDA code and re-mapping the thread blocks
to the data, as explained in ‘TransposeNew’ example of the
CUDA SDK [7].

CampProf further predicts the execution time of the kernel at
all the possible execution configurations, by extrapolating the
actual execution time of the kernel at the input configuration
proportionally to the execution band. This will give the user
an estimate of the effect of the partition camping problem at
different thread and block configurations.

B. Performance Prediction via Micro-benchmarks

We developed micro-benchmarks to predict the performance
range of the memory-bound CUDA kernel, given the num-
ber of memory reads (gld_32, gld_64, gld_128) and
memory writes (gst_32, gst_64, gst_128) for all the
execution configurations, i.e. for all possible active warps
per SM. We first write different micro-benchmarks that each
trigger a different type of memory transaction, where the
number of transactions is arbitrary, but fixed and known.
More specifically, one set of benchmarks will contain three
benchmarks for the reads and three for the writes, where the
active warps are distributed across all the memory partitions
uniformly and have no partition camping. For each of these
benchmarks, we write another set of benchmarks that explicitly
access a single memory partition, to mimic the partition
camping effect. For all the above benchmarks, we vary the
active warps per SM from 1 to 32 and record the kernel
execution times. We then use a multiple linear regression
model over the entire collected data set and formulate four
model equations. We use the model equations to calculate the
running times of any memory-bound kernel having all the
different memory transaction type, for any word length and
execution configuration, with and without partition camping.
We use these micro-benchmarks and prepare a set of the model

equations for each of the supported GPU architectures. Cur-
rently, we support the GPUs with compute capability 1.3. Once
the user enters their application specific input data, which
they collect from CudaProf and the occupancy calculator,
CampProf will aggregate the predicted running times for all
the memory access types (reads and writes of different word
lengths) and present the results in CampProf’s chart tool. As
mentioned before, the upper line will represent the worst case
with partition camping, and the lower line will be without
partition camping.

1) Micro-benchmarks: Figures 5 and 6 show the CUDA
kernel of the micro-benchmarks for memory reads, with-
out and with partition camping respectively. The micro-
benchmarks for memory writes are very similar to the memory
reads, except that readVal is written to the memory location
inside the for-loop (line numbers 28 and 21 in the respective
code snapshots). When all the threads in a half warp read 1
or 2 byte words, and the memory request is coalesced, then
it results in a 32 byte memory transaction to global memory.
Similarly, 4-byte and 8-byte coalesced memory requests per
thread will translate to 64-byte and 128-byte transactions to
global memory respectively [6]. So, we modify the data types
in the benchmarks from short int (to represent 2 bytes)
to int (4 bytes) and double (8 bytes), in order to trigger 32
byte, 64 byte and 128 byte memory transactions respectively
to the global memory. The set of benchmarks that mimic the
partition camping effect carefully access memory from a single
partition. Note that the above global memory transactions
can also be triggered in a multitude of other ways, but their
performance will not be different. For example, a 32-byte
transaction can also be invoked if all the threads in a half warp
access the same memory location (char/short int/int/double).
The performance of any memory transaction does not depend
on its invocation method, and we tested this fact by writing a
simple micro-kernel, which we have not included in this paper
for brevity. So, our benchmarks form a good representation of
real memory-bound kernels.

Validity Analysis: We now check if the micro-
benchmarks are truly memory bound before providing the
data to the statistical tools. We again analyze trends in the
kernel execution time when the GPU’s core-clock and memory
frequencies are changed. Figures 7 shows that the performance
decreases steadily with the increase in the core-clock fre-
quency until about 550 MHz. But, the change in the running
times become insignificant for higher frequencies including
and around the default core-clock frequency of 602 MHz [18].
Moreover, we see a large variation in performance for different
memory frequencies, proving the memory-boundedness of our
benchmarks.

2) Multiple Linear Regression: We perform multiple linear
regression analysis to fully understand the relationship be-
tween the execution time of our micro-benchmarks and its
parameters. The independent variables (predictors) that we
chose are: (1) the active warps per SM (w), and (2) the word-
lengths that are read or written per thread. The dependent
variable (response) is the execution time (t). The word-length

1
2 // TYPE can be short int, int, or double
3 typedef int TYPE;
4
5 __global__ void readBenchmark(TYPE *d_arr)
6 {
7 // assign unique partitions to blocks,
8 // where number of partitions is 8
9 int curPartition = blockIdx.x % 8;

10 // size of each partition: 256 bytes
11 int elemsInPartition = 256 / sizeof(TYPE);
12 // jump to unique partition
13 int startIndex = elemsInPartition
14 * curPartition;
15
16 TYPE readVal = 0;
17 /* ITERATIONS = 8192, but it can be any
18 fixed and known number. Loop counter ’x’
19 ensures coalescing */
20 for(int x = 0; x < ITERATIONS; x += 16)
21 {
22 /* offset guarantees to restrict the
23 index to the same partition */
24 int offset = ((threadIdx.x + x)
25 % elemsInPartition);
26 int index = startIndex + offset;
27 // Read from global memory location
28 readVal = d_arr[index];
29 }
30 /* Write once to memory to prevent the above
31 code from being optimized out */
32 d_arr[0] = readVal;
33 }

Fig. 5. Code Snapshot of the Read Micro-benchmark for the NVIDIA 200-
and 10-series GPUs (Without Partition Camping).

1
2 // TYPE can be short int, int, or double
3 typedef int TYPE;
4
5 __global__ void readBenchmark(TYPE *d_arr)
6 {
7 // size of each partition: 256 bytes
8 int elemsInPartition = 256 / sizeof(TYPE);
9

10 TYPE readVal = 0;
11 /* ITERATIONS = 8192, but it can be any
12 fixed and known number. Loop counter ’x’
13 ensures coalescing */
14 for(int x = 0; x < ITERATIONS; x += 16)
15 {
16 /* all blocks read from a single partition
17 to simulate Partition Camping */
18 int index = ((threadIdx.x + x)
19 % elemsInPartition);
20 // Read from global memory location
21 readVal = d_arr[index];
22 }
23 /* Write once to memory to prevent the above
24 code from being optimized out */
25 d_arr[0] = readVal;
26 }

Fig. 6. Code Snapshot of the Read Micro-benchmark for the NVIDIA 200-
and 10-series GPUs (With Partition Camping).

predictor takes only three values (2, 4 or 8 bytes)2, and so
21- and 2-byte word lengths will both result in 32-byte global memory

transactions.

50	

60	

70	

80	

90	

100	

450	
 500	
 550	
 602	
 650	
 700	

N
or
m
al
iz
ed

	
 T
im

e	

Core-­‐clock	
 Frequency	
 (MHz)	

(a) Micro-benchmark: Time vs GPU Core-clock Frequency

50	

60	

70	

80	

90	

100	

800	
 900	
 1000	
 1107	
 1200	
 1300	

N
or
m
al
iz
ed

	
 T
im

e	

Memory	
 Frequency	
 (MHz)	

(b) Micro-benchmark: Time vs GPU Memory Frequency

Fig. 7. Normalized Execution Time at Various Core-clock and Memory
Frequencies

we treat it as a group variable (b). This means, we first split
the data-type variable into two binary variables (b2 and b4),
where their co-efficients can be either 0 or 1. If the co-
efficient of b2 is set, it indicates that the word-length is 2-bytes.
Likewise, setting the co-efficient of b4 indicates a 4-byte word-
length, and if co-efficients of both b2 and b4 are not set, it
indicates the 8-byte word-length. Having decided our model
variables, we use SAS, a popular statistical analysis tool to
perform the regression analysis for our data. SAS helps us to
derive a model such as the equation 1, where αi denotes the
contribution of the different predictor variables to our model,
and β is the constant intercept.

t = α1w + α2b2 + α3b4 + β (1)

Significance Test: The output of SAS also shows us the
results of some statistical tests, which describe the significance
of our model, and how well our chosen model variables are
contributing to the overall model. In particular, R2[3] ranges
from 0.953 to 0.976 and RMSE (Root Mean Square Error)
ranges from 0.83 to 5.29. Moreover, we also used parameter
selection techniques in SAS to remove any non-significant
variable, and choose the best model. This step did not deem
any of our variables as insignificant. These results mean that

3R2 is a descriptive statistic for measuring the strength of the dependency
of the response variable on the predictors

the response variable (execution time) is strongly dependent
on the predictor variables (active warps per SM, data-types),
and each of the predictors are significantly contributing to the
response, which proves the strength of our performance model.
We evaluate our prediction model for real applications in detail
in Section VI.

C. Limitations of CampProf

CampProf can be used to discover the effect of partition
camping in GPU architectures with compute capability 1.2 or
1.3. We do not support devices with a lower compute capa-
bility. The architectural changes in the newer Fermi [19]cards
pose new problems for memory-bound kernels. The memory
access patterns are significantly different for Fermi, because
of the introduction of L1/L2 caches and having only 128-
byte memory transactions that occur only at the cache line
boundaries. The partition camping problem may still exist in
the newer cards, but its effect may be somewhat skewed due to
cached memory transactions. As a preliminary investigation,
we tried to disable the caches in Fermi to test the partition
camping problem, but we found options to disable only the
L1 cache and not the L2 cache.

CampProf may not support Fermi, but our visual analysis
technique will still work, though in a different scenario. For
example, we could use our ideas of displaying a performance
band for the Fermi cards, and visually show the effect of
cache misses and larger memory transactions for a given
execution configuration. This can then help in understanding
the gains that can be achieved by improving the locality of
memory accesses in the kernel. Our immediate goal is to
extend CampProf to CacheProf for the the Fermi architecture.

V. EXPERIMENTAL SETUP

In this section, we describe our hardware setup, and describe
the applications and their execution profiles, which we use to
validate CampProf.

A. Hardware

The host machine consists of an E8200 Intel Quad core
running at 2.33 GHz with 4 GB DDR2 SDRAM. The operating
system on the host is a 64-bit version of Ubuntu 9.04 distri-
bution running the 2.6.28-16 generic Linux kernel. The GPU
was programed via the CUDA 3.1 toolkit with the NVIDIA
driver version 256.40. We ran our tests on a GeForce GTX 280
graphics card (GT200 series). The GTX 280 has 1024 MB
of onboard GDDR3 RAM as global memory. The card has
the core-clock frequency of 602 MHz, processor (shader)
clock frequency of 1296 MHz and memory frequency of 1107
MHz [18]. This card belongs to compute capability 1.3. For the
sake of accuracy of results, all the processes which required
graphical user interface (GUI) were disabled to limit resource
sharing of the GPU.

B. Applications

In order to test the utility of CampProf, and the effi-
cacy of our performance prediction model, we chose the

following three applications, which are very different from
each other in their execution profiles – (1) GEM (Gaussian
Electrostatic Model) [20] is a molecular modeling application,
(2) GALib (Graph Analysis LIBrary) contains several graph
related applications, out of which we chose the Clique-Counter
application, and (3) the matrix transpose application. GEM
and Clique-Counter (of GALib) are complete applications,
while the matrix transpose is part of the NVIDIA CUDA
SDK. We now briefly describe the execution profiles of these
applications, and then show that each of these is a memory-
bound application, which is a necessary condition necessary
for CampProf.

1) GEM: GEM is a molecular modeling application which
allows one to visualize the electrostatic potential along the
surface of a macro-molecule [20]. GEM belongs to the
N-Body class of applications (or dwarfs4). The goal of this
application is to compute the electrostatic potential at all
the surface points due to the molecular components. GEM
uses an approximation algorithm to speed up the electrostatic
calculations by taking advantage of the natural partitioning
of the molecules into distant higher level components. The
algorithm is presented below:

Algorithm: GEM with the Approximation Algorithm
for v = 0 to #Surface Points do

for c = 0 to #Higher Level Components do
if (dist(v, c) >= threshold) then

potential += calcPotential(v, c)
else

for a = 0 to #Atoms in c do
potential += calcPotential(v, a)

end for
end for

end for

Each GPU thread is assigned to compute the electrostatic
potential at one surface point, which is later added together to
calculate the total potential for the molecule. The approxima-
tion algorithm requires the distance information between each
surface point and the higher level components. To compute
this distance, each thread needs to access the component
coordinates, which are stored in the GPU’s global memory.
Therefore, every computation results in multiple memory ac-
cesses, contributing to GEM being memory-bound, as proved
later.

2) GALib: We have chosen the Clique-Counter application
from the GALib library for our validation. In graph theory, a
clique is a set of vertices in a graph, where every two vertices
in the set are connected by an edge of the graph. Cliques are
one of the basic concepts of graph theory and are one of the
fundamental measures for characterizing different classes of
graphs. We identify the size of a clique by the number of
vertices in the clique. Clique Counter is a program, which
as the name suggests, counts the number of cliques of user-

4A dwarf or a motif is a common computation or communication pattern
in parallel algorithms [21].

!"#$%$&$'()*+#,$-).,+'/"0/1)$')2345

)
)))

)) 6+'7+,8)9::;)))!

shared memory 32x32 array “tile” indicated by the yellow line segments.

After a __syncthreads() call to ensure all writes to tile are completed,

the half warp writes four half columns of tile to four half rows of an odata
matrix tile, indicated by the green line segments.

With the improved access pattern to memory in odata, the writes are coalesced
and we see an improved performance:

 Effective Bandwidth (GB/s)
2048x2048, GTX 280

 Loop over kernel Loop in kernel

Simple Copy 96.9 81.6

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1

While there is a dramatic increase in effective bandwidth of the coalesced
transpose over the naïve transpose, there still remains a large performance gap
between the coalesced transpose and the copy. The additional indexing required
by the transpose doesn’t appear to be the cause for the performance gap, since the
results in the “Loop in kernel” column, where the index calculation is amortized
over 100 iterations of the data movement, also shows a large performance
difference. One possible cause of this performance gap is the synchronization
barrier required in the coalesced transpose. This can be easily assessed using the
following copy kernel which utilizes shared memory and contains a
__syncthreads() call:

__global__ void copySharedMem(float *odata, float *idata,
 int width, int height, int nreps)
{

idata odata

tile

Fig. 8. Matrix Transpose (Source: [7])

specified size in a graph. This is an NP-complete problem,
with respect to the size of the clique that must be counted.

The vertices of the input graph are distributed among the
CPU threads in a cyclic fashion for load balancing purposes,
where the entire graph is stored in the GPU’s global memory
in the form of adjacency lists. Each thread counts the number
of cliques of the given size that can be formed from its set
of vertices, followed by a reduction operation that sums up
the individual clique counts to get the final result. Larger
cliques are formed from smaller cliques by incrementally
adding common vertices to the clique. The Clique Counter
application belongs to the ‘backtracking’ class of algorithms
(or dwarfs), where set intersection operations are repeatedly
performed between the vertex set of the current clique and
each of their adjacency lists. This means, each thread has to
fetch adjacency lists of several vertices from the GPU’s global
memory in no particular order. Moreover, the set intersection
operation does not have any arithmetic intensive operations,
and so Clique-Counter can be a memory-bound application.

3) Matrix Transpose: Matrix Transpose is a simple kernel,
which is part of the NVIDIA CUDA SDK. The kernel per-
forms an out-of-place transpose of a matrix of floating point
numbers, which means that the input and output matrices are
stored at different locations in the GPU’s global memory. The
input matrix is divided into square 16 × 16 tiles, so that the
loads are coalesced. Each tile is assigned to a thread block,
which performs the following operations – (1) load the tile
from the input matrix (global memory), (2) re-map the threads
to tile elements to avoid uncoalesced memory writes, and (3)
store the tile in the output matrix (global memory). Thread
synchronization is required between the above steps to make
sure that the global memory writes take place only after all the
reads have finished. Also, this application does not have any
arithmetic intensive operations, and so matrix transpose can
be considered to be a memory-bound application. Figure 8
describes the matrix transpose kernel.

Proof of Memory-Boundedness: To check if our cho-
sen applications are compute-bound or memory-bound, we
analyzed the change in their execution times by varying
the GPU’s core-clock and memory frequencies. Higher core-
clock frequency abets an improved performance of arith-
metic instructions, while a higher memory frequency helps
faster loads and stores from/to the GPU’s global memory.
We changed these frequencies by using Coolbits, a utility
which allows the tweaking of these features via the NVIDIA

driver control panel. The default core-clock frequency for the
GTX 280 is 602 MHz, while the default memory frequency is
1107 MHz [18]. Coolbits enables over-clocking and under-
clocking of the underlying graphics card, where the core-
clock frequencies can be changed from 450 MHz to 700 MHz
and the memory frequencies can be varied from 800 MHz to
1300 MHz. When we tried to set the frequencies outside these
ranges, they would be automatically reset back to the default
frequency values.

For all the chosen applications, we plot the execution times
at various frequencies and observe the trends. We first keep
the GPU’s memory frequency constant at the default value
of 1107 MHz and vary the core-clock frequency. Figure 9a
shows that the execution times decrease steadily with the
increase in the core-clock frequency until about 550 MHz.
But, the change in the running times become insignificant for
higher frequencies, including over-clocking. Therefore, from
the graph, we can infer that some of the applications are
compute-bound until the core-clock frequency of 550 MHz.
However, the applications become memory-bound at higher
frequencies, including the default core-clock frequency of
602 MHz.

To further support our claim, we plot Figure 9b, where the
core-clock frequency is kept constant at the default value of
602 MHz, while the memory frequency is varied. We can see
that the execution times decrease steadily with the increase
in memory frequency. In this case, even over-clocking of the
GPU helps in the reduction of execution time. Thus, we can
convincingly state that the chosen applications are memory-
bound at the default core-clock and memory frequencies of
the GPU.

VI. RESULTS AND DISCUSSION

In this section, we first demonstrate the utility of CampProf
for detecting partition camping in the chosen applications,
followed by validating the performance prediction model that
serves as the back-end to the tool.

A. Partition Camping Detection

In this section, we demonstrate how CampProf can be used
to visually analyze the partition camping effect in GEM,
GALib and the matrix transpose applications. We then use
matrix transpose as a case study to show how CampProf is
used to monitor the performance of the kernel, where the
execution time progresses towards the best case after the
partition camping effect has been reduced, i.e. the NVIDIA
SDK provides two versions of the transpose example – one
with partition camping and another which is supposed to be
free from partition camping. The CampProf output can be used
to support NVIDIA’s claim as well.

Figure 10 is the CampProf output depicting the partition
camping effect in all the three applications. The input to the
tool is the number of memory transactions and the kernel
execution time for one execution configuration (denoted by
the ?). It shows the worst and best execution times for all
the execution configurations, as predicted by our model. The

!"

#!"

$!"

%!"

&!"

'!"

(!"

#" $" %" &" '" (")" *" +" #!" ##" #$" #%" #&" #'" #(" #*" $!" $$" $&" $(" $*" %!" %$"

!"
#$
"%
&'
("
)*
+
,$

&-
./

"&
01
")
,$

23
4&

5)+6"&78#93&9"#&1:&

;':&

,-./0"

12234567-8"

9:/0"

Input Kernel Configuration

(a) GEM: Performance Prediction

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

#!"

'" #" (" $")" %" *" &" +" '!" ''" '#" '(" '$" ')" '%" '&" #!" ##" #$" #%" #&" (!" (#"

!"
#$
"%
&'
("
)*
+
,$

&-
./

"&
01
")
,$

23
4&

5)+6"&78#93&9"#&1:&

;5<.=&

,-./0"

12234567-8"

9:/0"

Input Kernel Configuration

(b) GALib: Performance Prediction

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$" %" &" '" (")" *" +" ," $!" $$" $%" $&" $'" $(" $)" $+" %!" %%" %'" %)" %+" &!" &%"

!"
#$
"%
&'
("
)*
+
,$

&-
./

"&
01
")
,$

23
4&

5)+6"&78#93&9"#&1:&

:8;#.(&-#8$39,3"&

-./01"

23345678.9":-51;"<7=359>?"

23345678.9":@."<7=359>?"

AB01"

Input Kernel Configurations

(c) Matrix Transpose: Performance Prediction

Fig. 10. Performance Bands

‘Application’ line in the graphs is extrapolated from the actual
execution time that was provided as input. We now discuss
application specific output details.

1) GEM: The predicted application execution times are
presented for only up to 16 active warps, because this is the
maximum active warps per SM for GEM, as computed by the
CUDA Occupancy Calculator (based on the shared memory
and register usage for GEM). The predicted performance can
be seen to be extremely close to the ‘Best’ line of CampProf,
which suggests that GEM does not suffer from partition

50	

60	

70	

80	

90	

100	

450	
 500	
 550	
 602	
 650	
 700	

N
or
m
al
iz
ed

	
 T
im

e	

Core-­‐clock	
 Frequency	
 (MHz)	

GEM	
 GALib	
 Matrix	
 Transpose	

(a) Time vs GPU Core-clock Frequency

50	

60	

70	

80	

90	

100	

800	
 900	
 1000	
 1107	
 1200	
 1300	

N
or
m
al
iz
ed

	
 T
im

e	

Memory	
 Frequency	
 (MHz)	

GEM	
 GALib	
 Matrix	
 Transpose	

(b) Time vs GPU Memory Frequency

Fig. 9. Normalized Execution Time at Various Core-clock and Memory Frequencies

!"#$$%&'(' !"#$$%&')' !"#$$%&'*' !"#$$%&'+' !"#$$%&',' !"#$$%&'-' !"#$$%&'.' !"#$$%&'/'

Step 1 Warp 1

Step 2 Warp 2 Warp 1

Step 3 Warp 3 Warp 2 Warp 1

Step 4 Warp 4 Warp 3 Warp 2 Warp 1

Step 5 Warp 5 Warp 4 Warp 3 Warp 2 Warp 1

Step 6 Warp 6 Warp 5 Warp 4 Warp 3 Warp 2 Warp 1

Step 7 Warp 7 Warp 6 Warp 5 Warp 4 Warp 3 Warp 2 Warp 1

Step 8 Warp 8 Warp 7 Warp 6 Warp 5 Warp 4 Warp 3 Warp 2 Warp 1

Step 9 Warp 1 Warp 8 Warp 7 Warp 6 Warp 5 Warp 4 Warp 3 Warp 2

Step 10 Warp 2 Warp 1 Warp 8 Warp 7 Warp 6 Warp 5 Warp 4 Warp 3

!"#$%"&'()#*+&,%*--#./0&(%12&456&$+7(&89:72&

;
&

/#&#.&

Fig. 11. GEM: Memory Access Pattern

camping.
We now analyze the memory access patterns in GEM to

validate CampProf’s output that there is no partition camp-
ing. For computing the distance between the surface point
and the higher level component, every thread accesses the
coordinates of the components in the same order, i.e, from
the first component to the last. This indicates that all the
active warps are queued up behind the same memory partition
at the beginning of the algorithm. But only one warp can
go through to access that global memory partition, stalling
the other warps. Once the first warp finishes accessing the
elements in the first partition, it would move on the next
partition, while the first partition is accessed by the next warp
in the queue. Partition access will be pipelined, as shown in
the figure 11. After eight such iterations (eight partitions are
in the GTX 280), the memory accesses will be distributed
across all the available memory partitions. It can be assumed
that the pipelined memory access will have no further stalls,
because the workload for all warps is the same, i.e, computing
the distance to 64 higher level components. This indicates that
GEM does not suffer from partition camping.

2) GALib: In the Clique-Counter application (of the GALib
library), each thread has to fetch adjacency lists of several
vertices from the GPU’s global memory in an undefined

order. This indicates that the memory access patterns are
neither uniformly distributed across all the memory partitions,
nor are they accessing the same memory partition. So, the
Clique-Counter application can neither be completely free
from partition camping, nor is it near the worst case scenario,
as indicated in the figure 10b. The predicted line is shown
only until 16 active warps per SM, because of the application
specific resource usage, as explained previously for GEM.

3) Matrix Transpose: The NVIDIA CUDA SDK provides
various versions of matrix transpose, but we specifically
chose two of them for our experiments – one with moder-
ate partition camping (called Transpose Coalesced) and the
other without partition camping (called Transpose Diagonal).
The only difference between the two applications versions
is their global memory access pattern. Using CampProf, we
determine the ‘Worst’ and the ‘Best’ execution times for the
application as shown in Figure 10c. We use application specific
input parameters from Transpose Coalesced and determine the
extrapolated application times, which is shown in the figure
as ‘Application (with Camping)’. Again, the application’s
resource usage restricts the maximum active warps per SM
for this application to 24 (deduced from the Occupancy Cal-
culator). We note that this application time lies somewhere in
the middle of the prediction band, implying that the application
suffers from partition camping although it is not completely
camped, i.e. the predicted times are not too close to the ‘Worst’
line.

To validate the fact that Transpose Coalesced is not free
from partition camping, we analyze its global memory access
pattern as shown in figure 12a. Different colors imply different
partitions in the global memory and the numbers denote the
blocks on the GPU. The figure shows that the blocks are
evenly distributed among the partitions while reading the input
matrix, and so partition camping is not a problem for the read
operation. But, while writing into the output matrix, all blocks
write to the same memory partition, making the Transpose
Coalesced version of the application suffer from moderate
partition camping. We can see that the CampProf output agrees

!"#$%$&$'()*+#,$-).,+'/"0/1)$')2345

)
)))
!"# 6+'7+,8)9::;)

Here we allow for both square and nonsquare matrices. The mapping for
nonsquare matrices can be used in the general case, however the simpler
expressions for square matrices evaluate quicker and are preferable when
appropriate.

If we revisit our 2048x2048 matrix in the figure below, we can see how the
diagonal reordering solves the partition camping problem. When reading from
idata and writing to odata in the diagonal case, pairs of tiles cycle through

partitions just as in the cartesian case when reading data from idata.

The performance of the diagonal kernel in the table below reflects this. The
bandwidth measured when looping within the kernel over the read and writes to
global memory is within a few percent of the shared memory copy. When
looping over the kernel, the performance degrades slightly, likely due to
additional computation involved in calculating blockIdx_x and

blockIdx_y. However, even with this performance degradation the diagonal
transpose has over four times the bandwidth of the other complete transposes.

 … 130 129 128

69 68 67 66 65 64

5 4 3 2 1 0

 69 5

 68 4

 … 67 3

 130 66 2

 129 65 1

 128 64 0

idata odata

5

68 4

… 67 3

 130 66 2

 129 65 1

 128 64 0

5 68 …

 4 67 130

 3 66 129

 2 65 128

 1 64

 0

Cartesian

Diagonal

(a) Transpose Coalesced

!"#$%$&$'()*+#,$-).,+'/"0/1)$')2345

)
)))
!"# 6+'7+,8)9::;)

Here we allow for both square and nonsquare matrices. The mapping for
nonsquare matrices can be used in the general case, however the simpler
expressions for square matrices evaluate quicker and are preferable when
appropriate.

If we revisit our 2048x2048 matrix in the figure below, we can see how the
diagonal reordering solves the partition camping problem. When reading from
idata and writing to odata in the diagonal case, pairs of tiles cycle through

partitions just as in the cartesian case when reading data from idata.

The performance of the diagonal kernel in the table below reflects this. The
bandwidth measured when looping within the kernel over the read and writes to
global memory is within a few percent of the shared memory copy. When
looping over the kernel, the performance degrades slightly, likely due to
additional computation involved in calculating blockIdx_x and

blockIdx_y. However, even with this performance degradation the diagonal
transpose has over four times the bandwidth of the other complete transposes.

 … 130 129 128

69 68 67 66 65 64

5 4 3 2 1 0

 69 5

 68 4

 … 67 3

 130 66 2

 129 65 1

 128 64 0

idata odata

5

68 4

… 67 3

 130 66 2

 129 65 1

 128 64 0

5 68 …

 4 67 130

 3 66 129

 2 65 128

 1 64

 0

Cartesian

Diagonal

(b) Transpose Diagonal

Fig. 12. Matrix Transpose: Memory Access Patterns [7]

with this argument.
In another version of the application called Transpose Diag-

onal, this problem has been rectified by rearranging the block
scheduling. Now, the blocks are diagonally arranged which
means that subsequent blocks are assigned diagonal tiles rather
than sequential ones. This helps in making the application free
from partition camping for both reads and writes, because the
blocks always access different memory partitions uniformly as
shown in Figure 12b. This is in agreement with the output of
CampProf as depicted by the line ‘Application (no Camping)’
in figure 10c, which is close to the ‘Best’ predicted times in
the figure.

Thus, we have demonstrated how CampProf can be used to
monitor the performance of the kernel, where the execution
time progresses towards the best case after the partition
camping effect has been reduced. This is a great utility to
use to verify if the programmer’s optimizations are solving
the partition camping problem or not.

B. Model Accuracy

In this section, we validate the accuracy of our performance
model, by validating the accuracy of each predicted line in
CampProf, i.e. the ‘Best’ line, ‘Worst’ line and the ‘Appli-
cation’ line, against actual application execution times. We
choose to use geometric mean as the error metric, because it
suppresses the effect of outliers and so, is a better estimate for
accuracy in the model.

Validating the ‘Best’ line: To verify the accuracy of the
predicted ‘Best’ line, we should compute the error between the
actual execution times for an application that is known to be
free of partition camping and the predicted ‘Best’ time by our
model for the same application. GEM has been shown to be
free of partition camping in the previous section and hence, its
execution times is expected to be in the vicinity of the lower
time line of our prediction band.

In Figure 13a, the actual execution times and the predicted
‘Best’ times for GEM have been shown for all the possible
configurations. As expected, the predicted times (‘Best’ line of

the CampProf output) are in the vicinity of the actual execution
times, and the geometric mean of error for the predicted time
was found out be 11.7%.

Validating the ‘Worst’ line: To verify the accuracy of
the predicted ‘Worst’ line of the prediction band, we should
compute the error between the actual execution times for an
application that is known to have maximum partition camping
effects and the predicted ‘Worst’ time by our model for the
same application. This is a non-trivial task for two reasons
– (1) It is rare to find applications, other than our micro-
benchmarks, which have the maximum partition camping
effects, and (2) there is no other tool or model available
against which we can verify our predicted times. Therefore, it
is not possible to verify the accuracy of the upper line of the
prediction band. We can only use the predicted ‘Worst’ case
line as a loose upper bound for the kernel’s performance.

Validating the ‘Application’ line: The ‘Application’ line
of CampProf is predicted by extrapolation based on the input
execution time provided for one kernel configuration. We
now estimate the accuracy of this extrapolation performed by
our model for the Clique-Counter application (of the GALib
library), because this application is shown to have moderate
partition camping effects, and so cannot be used to validate
either the ‘Best’ or the ‘Worst’ predicted lines.

In Figure 13b, we present the extrapolated application times
and the actual times for all possible kernel configurations for
GALib, where the starting point for extrapolation is at 12
active warps per SM. But, there are 16 starting points (16 pos-
sible execution configurations) from which one can extrapolate
to verify the prediction model. We chose all the 16 execution
configurations as starting points for extrapolation for getting
the best estimate of our model accuracy. The extrapolated
times shown in the figure is for one such starting point (at
12 active warps per SM). The geometric mean of errors due
to all such predicted times was found out to be 9.3%, thereby,
suggesting that our performance model is accurate in the case
of performance prediction via extrapolation.

VII. CONCLUSIONS AND FUTURE WORK

Key understanding of the GPU architecture is imperative
to obtain optimum performance. Though there are certain
prevalent architectural features of the GPU, there exists a fairly
obscure feature; division of the GPU Global memory into
various partitions. This feature of the GPU results in what is
known as the Partition Camping problem which can adversely
impact the performance of any memory bound application
by up to seven folds. In this paper, we have explored this
partition camping problem and have developed a performance
model which not only detects the extent to which a memory
bound application is partition camped but also predicts the
execution times for all kernel configurations if the time for one
configuration is known. The performance model was formed
using multiple linear regression on the results of our micro-
benchmarks which exercise the partition camping effects on
the GPU. We have also developed a simple, spreadsheet based
tool called CampProf which inherently uses the indigenous

0	

5	

10	

15	

20	

25	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	

Ex
ec
u&

on
	
 T
im

e	

(s
ec
on

ds
)	

Ac&ve	
 Warps	
 per	
 SM	

GEM	

Predicted	

Actual	

(a) GEM

!"

#"

$"

%"

&"

'!"

'#"

'" #" (" $")" %" *" &" +" '!" ''" '#" '(" '$" ')" '%"

!"
#$
%&

'(
)*
+,

#)
-.
#$
'(

/.
0)

1$&2#)3456.)6#5)78)

91:;<)

,-./012./"

312456"

Input Kernel Configuration

(b) GALib

Fig. 13. Model Accuracy.

model for visual performance analysis. To the best of our
knowledge, CampProf is the first tool of its kind which takes
in as input parameters, easily available CudaProf values and
predicts a range of execution times for an application.

Our model, at present works only for memory bound
applications. Therefore, in near future, we would like to
come up with such a performance model for compute bound
applications as well. The newer Fermi architecture is known
not to suffer from the partition camping problem, however,
with its cache hierarchy, it makes GPU programming more
challenging. For the Fermi cards, idea of visual performance
analysis can be used to portray the effect of cache misses and
to understand the gains of improved data locality. Hence, we
would like to develop “CacheProf” for the next generation
GPU architecture.

REFERENCES

[1] S. Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi, S.-Z. Ueng, and W. mei
Hwu, “Program Optimization Study on a 128-Core GPU,” in Workshop
on General Purpose Processing on Graphics Processing, 2008.

[2] Sara S. Baghsorkhi and Matthieu Delahaye and Sanjay J. Patel and
William D. Gropp and Wen-mei W. Hwu, “An adaptive performance
modeling tool for GPU architectures,” in PPPoPP ’10: Proceedings
of the 15th ACM SIGPLAN symposium on Principles and practice of
parallel programming, 2008.

[3] S. Hong and H. Kim, “An Analytical Model for a GPU Architecture
with Memory-level and Thread-level Parallelism Awareness,” in ISCA
’10: Proceedings of the 37th International Symposium of Computer
Architecture, 2009.

[4] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi
and Andreas Moshovos, “Demystifying gpu microarchitecture through
microbenchmarking,” in ISPASS ’10: Proceedings of the 37th IEEE

International Symposium on Performance Analysis of Systems and
Software, 2010.

[5] S. Hong and H. Kim, “An Integrated GPU Power and Performance
Model,” in ISCA ’10: Proceedings of the 37th International Symposium
of Computer Architecture, 2010.

[6] NVIDIA, “NVIDIA CUDA Programming Guide-2.3,” 2009,
http://developer.download.nvidia.com/compute/cuda/2 3/toolkit/docs/
NVIDIA CUDA Programming Guide 2.3.pdf.

[7] ——, “Optimizing Matrix Transpose in CUDA,” 2009.
[8] ——, “CUDA Occupancy Calculator,” 2008, http://developer.download.

nvidia.com/compute/cuda/CUDA Occupancy calculator.xls.
[9] ——, “CUDA Visual Profiler,” 2009, http://developer.download.nvidia.

com/compute/cuda/2 2/toolkit/docs/cudaprof 1.2 readme.html.
[10] Michael Boyer, Kevin Skadron and Westley Weimer, “Automated Dy-

namic Analysis of CUDA Programs,” in Proceedings of 3rd Workshop
on Software Tools for MultiCore Systems, 2010.

[11] NVIDIA, “The CUDA Compiler Driver NVCC,” 2008, http://www.
nvidia.com/object/io 1213955090354.html.

[12] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng,
J. A. Stratton, and W.-m. W. Hwu, “Program optimization space pruning
for a multithreaded gpu,” in CGO ’08: Proceedings of the 6th annual
IEEE/ACM international symposium on Code generation and optimiza-
tion. New York, NY, USA: ACM, 2008, pp. 195–204.

[13] Dana Schaa and David Kaeli, “Exploring the Multi-GPU Design Space,”
in IPDPS ’09: Proc. of the IEEE International Symposium on Parallel
and Distributed Computing, 2009.

[14] V. Volkov and J. Demmel, “Benchmarking GPUs to Tune Dense Linear
Algebra,” in Proc. of the 2008 ACM/IEEE Conference on Supercomput-
ing, November 2008.

[15] W.J. van der Laan, “Decuda,” 2008, http://wiki.github.com/laanwj/
decuda.

[16] Hitoshi Nagasaka, Naoya Maruyama, Akira Nukada, Toshio Endo, and
Satoshi Matsuoka, “Statistical Power Modeling of GPU Kernels Using
Performance Counters,” in IGCC ’10: Proceedings of International
Green Computing Conference, 2010.

[17] Michael Bader, Hans-Joachim Bungartz, Dheevatsa Mudigere, Srihari
Narasimhan and Babu Narayanan, “Fast gpgpu data rearrangement
kernels using cuda,” in HIPC ’09: Proceedings of High Performance
Computing Conference, 2009.

[18] NVIDIA, “GeForce GTX 280 Specifications,” http://www.nvidia.com/
object/product geforce gtx 280 us.html.

[19] ——, “NVIDIA Fermi Compute Acrhitecture,” 2008,
http://www.nvidia.com/content/PDF/fermi white papers/NVIDIA
Fermi Compute Architecture Whitepaper.pdf.

[20] John C. Gordon, Andrew T. Fenley, and A. Onufriev, “‘An Analytical
Approach to Computing Biomolecular Electrostatic Potential, II: Vali-
dation and Applications,” Journal of Chemical Physics, 2008.

[21] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The landscape of parallel computing research: A view
from berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

