72 research outputs found

    OvervÄking- og kartleggingsprogram for tomatbrunflekkvirus i 2021 og 2022. Analysene er utfÞrt pÄ oppdrag fra Mattilsynet

    Get PDF
    Tomat er fÞlsom for mange virus og viroider, men det har likevel ikke vÊrt vanlig Ä finne virus og viroider i norske tomatveksthus de siste ti-Ärene. Det har nÄ dukket opp et nytt virus i tomat i Europa som vekker stor bekymring. Det er tomatbrunflekkvirus (tomato brown rugose fruit virus, ToBRFV). Mattilsynet gjennomfÞrte derfor i 2021 og 2022 et kartleggingsprogram for ToBRFV i samarbeid med NIBIO. I 2021, ble det samlet inn 394 prÞver (som representerte 3940 individuelle planter) fra i alt 17 gartnerier, hovedsakelig fra Rogaland. Det ble i 2022 samlet inn 150 prÞver (som representerte 3000 individuelle planter) fra i alt 7 smÄplante tomatgartnerier. Det ble ikke pÄvist ToBRFV i noen av prÞvene. Det ble imidlertid funnet ToBRFV i en prÞve som ble sendt inn til Planteklinikken fra et mindre gartneri i Vestfold pÄ forsommeren 2021.OvervÄking- og kartleggingsprogram for tomatbrunflekkvirus i 2021 og 2022. Analysene er utfÞrt pÄ oppdrag fra MattilsynetpublishedVersio

    Kartlegging av virus i jordbĂŠr 2017 og 2018. Resultater fra OK-programmet.

    Get PDF
    Det ble sommeren 2017 og 2018 gjennomfĂžrt et artleggingsprogram for Ă„ undersĂžke om plantemateriale av jordbĂŠr som var nylig importert, kunne vĂŠre infisert av virus. Det ble tatt ut stikkprĂžver i jordbĂŠrfeltene hos utvalgte bĂŠrprodusenter som hadde baser sin produksjon pĂ„ importerte planter, i 2017 til sammen 150 prĂžver fra 20 bruk i fylkene Hedmark, Oppland, Vestfold, Buskerud, Agder, Rogaland og Sogn og Fjordane. I 2018 ble det tatt ut 156 prĂžver fra 14 bruk i fylkene Østfold, Akershus, MĂžre og Romsdal og TrĂžndelag. Disse prĂžvene ble testet for fire bladlusoverfĂžrte virus som er relativt vanlige i Europa, men ikke i Norden: jordbĂŠr-nervebĂ„ndvirus (strawberry vein banding virus, SVBV), jordbĂŠr-mildmosaikkvirus (strawberry mottle virus, SMoV), jordbĂŠr-bladgulningvirus (strawberry mild yellow edge virus, SMYEV) og jordbĂŠr-bladkrĂžllevirus (strawberry crinkle virus, SCV). Det ble i 2017 pĂ„vist virus i prĂžver fra tre lokaliteter: SCV ble funnet pĂ„ tre steder, mens SMYEV ble funnet pĂ„ ett sted i en prĂžve som hadde dobbeltinfeksjon med SMYEV og SCV. PrĂžvene hadde ikke synlige symptomer. I 2018 ble det blant 156 prĂžver pĂ„vist virus i Ă©n prĂžve – det var SVBV i en prĂžve av ‘Sonata’ i Akershus. Denne prĂžven hadde heller ikke synlige symptomer.publishedVersio

    Virus i jordbĂŠr 2017. Resultater fra OK-programmet.

    Get PDF
    Det ble sommeren 2017 gjennomfÞrt et kartleggingsprogram for Ä undersÞke om importert plantemateriale av jordbÊr kunne vÊre infisert av virus. Det ble tatt ut stikkprÞver i jordbÊrfeltene hos utvalgte bÊrprodusenter som hadde baser sin produksjon pÄ importerte planter, til sammen 150 prÞver. Disse prÞvene ble testet for fire bladlusoverfÞrte virus som er relativt vanlige i Europa, men ikke i Norden: jordbÊr-nervebÄndvirus (strawberry vein banding virus), jordbÊr-mildmosaikkvirus (strawberry mottle virus), jordbÊr-bladgulningvirus (strawberry mild yellow edge virus) og jordbÊrbladkrÞllevirus (strawberry crinkle virus). Det ble pÄvist virus i prÞver fra tre lokaliteter: strawberry crinkle virus ble funnet pÄ tre steder, mens strawberry mild yellow edge virus ble funnet pÄ ett sted i en prÞve som hadde dobbeltinfeksjon med strawberry mild yellow edge virus og strawberry crinkle virus. PrÞvene hadde ikke synlige symptomer.publishedVersio

    Kartlegging for sharkavirus 2013

    Get PDF
    Sharkavirus (Plum pox virus, PPV) er en karanteneskadegjÞrer som har blitt funnet i plomme, fersken og aprikos i Norge. FÞrste pÄvisning var i 1998. Siden da har det pÄgÄtt et kartleggings- og utryddingsprogram med det mÄl Ä utrydde sharkavirus fra frukthager med kommersiell plommedyrking i Norge. Det ble testet 2392 prÞver for sharkavirus i 2013. Av disse var 625 kvistprÞver testet i perioden januar til mai, mens 1767 var bladprÞver. Det ble ikke pÄvist sharkavirus i noen av kvistprÞvene. I alt 47 prÞver slo ut positiv for sharkavirus i 2013. Disse prÞvene ble funnet pÄ 10 lokaliteter, hvorav 8 var helt nye. I alt 12 lokaliteter som hadde hatt funn tidligere ble inspisert pÄ nytt i 2013 uten at det ble pÄvist sharkavirus. Siden 1998 har det blitt testet mer enn 80 000 trÊr pÄ 921 lokaliteter (frukthager, privathager, planteskoler og hagesentere). Det har blitt pÄvist sharkavirus pÄ 88 lokaliteter. Vi kan regne smitten for Ä vÊre utryddet pÄ 80 % av disse lokalitetene. Med en god oppfÞlging som har inkludert grundig inspeksjon, testing av alle plommetrÊr pÄ lokaliteter med smitte, og rydding av infiserte trÊr, har en lykkes godt med Ä rydde smitte i alle viktige fruktomrÄder. Det er imidlertid et problem at virkningen av bekjempelsesarbeidet blir dÄrlig pÄ grunn av at det fÞlger med smitte med nytt plantemateriale som importeres til Ä etablere nyplantinger

    Heksekost pĂ„ eple – nye utbrudd

    Get PDF
    Heksekost pÄ eple er en karanteneskadegjÞrer. HÞsten 2010 er det pÄvist heksekost i eple fra 11 frukthager, 10 i Sogn og 1 i Telemark. Sannsynligvis stÄr det infiserte trÊr pÄ mange flere steder. I Sogn er det funnet heksekost bÄde i Leikanger/Hermansverk, Slinde, YlvisÄker og LÊrdal. I frukthagene med pÄvist smitte var det tydelig redusert fruktstÞrrelse pÄ flere sorter, sÊrlig var dette framtredende i sorten Discovery.publishedVersio

    Known and Potential Invertebrate Vectors of Raspberry Viruses

    Get PDF
    The estimated global production of raspberry from year 2016 to 2020 averaged 846,515 tons. The most common cultivated Rubus spp. is European red raspberry (Rubus idaeus L. subsp. idaeus). Often cultivated for its high nutritional value, the red raspberry (Rubus idaeus) is susceptible to multiple viruses that lead to yield loss. These viruses are transmitted through different mechanisms, of which one is invertebrate vectors. Aphids and nematodes are known to be vectors of specific raspberry viruses. However, there are still other potential raspberry virus vectors that are not well-studied. This review aimed to provide an overview of studies related to this topic. All the known invertebrates feeding on raspberry were summarized. Eight species of aphids and seven species of plant-parasitic nematodes were the only proven raspberry virus vectors. In addition, the eriophyid mite, Phyllocoptes gracilis, has been suggested as the natural vector of raspberry leaf blotch virus based on the current available evidence. Interactions between vector and non-vector herbivore may promote the spread of raspberry viruses. As a conclusion, there are still multiple aspects of this topic that require further studies to get a better understanding of the interactions among the viral pathogens, invertebrate vectors, and non-vectors in the raspberry agroecosystem. Eventually, this will assist in development of better pest management strategies.publishedVersio

    Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus

    Get PDF
    Agrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv. Millenium were transformed by Agrobacterium tumefaciens, strain LBA 4404, harbouring virus-derived hairpin (hp) RNA gene constructs to induce RNA silencing-mediated resistance to Poinsettia mosaic virus (PnMV). Prior to transformation, an efficient somatic embryogenesis system was developed for poinsettia cv. Millenium in which about 75% of the explants produced somatic embryos. In 5 experiments utilizing 868 explants, 18 independent transgenic lines were generated. An average transformation frequency of 2.1% (range 1.2–3.5%) was revealed. Stable integration of transgenes into the poinsettia nuclear genome was confirmed by PCR and Southern blot analysis. Both single- and multiple-copy transgene integration into the poinsettia genome were found among transformants. Transgenic poinsettia plants showing resistance to mechanical inoculation of PnMV were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Northern blot analysis of low molecular weight RNA revealed that transgene-derived small interfering (si) RNA molecules were detected among the poinsettia transformants prior to inoculation. The Agrobacterium-mediated transformation methodology developed in the current study should facilitate improvement of this ornamental plant with enhanced disease resistance, quality improvement and desirable colour alteration. Because poinsettia is a non-food, non-feed plant and is not propagated through sexual reproduction, this is likely to be more acceptable even in areas where genetically modified crops are currently not cultivated

    2021 Taxonomic Update Of Phylum Negarnaviricota (Riboviria: Orthornavirae), Including The Large Orders Bunyavirales And Mononegavirales:Negarnaviricota Taxonomy Update 2021

    Get PDF

    Host range and symptomatology of Pepino mosaic virus strains occurring in Europe

    Get PDF
    Pepino mosaic virus (PepMV) has caused great concern in the greenhouse tomato industry after it was found causing a new disease in tomato in 1999. The objective of this paper is to investigate alternative hosts and compare important biological characteristics of the three PepMV strains occurring in Europe when tested under different environmental conditions. To this end we compared the infectivity and symptom development of three, well characterized isolates belonging to three different PepMV strains, EU-tom, Ch2 and US1, by inoculating them on tomato, possible alternative host plants in the family Solanaceae and selected test plants. The inoculation experiments were done in 10 countries from south to north in Europe. The importance of alternative hosts among the solanaceous crops and the usefulness of test plants in the biological characterization of PepMV isolates are discussed. Our data for the three strains tested at 10 different European locations with both international and local cultivars showed that eggplant is an alternative host of PepMV. Sweet pepper is not an important host of PepMV, but potato can be infected when the right isolate is matched with a specific cultivar. Nicotiana occidentalis 37B is a useful indicator plant for PepMV studies, since it reacts with a different symptomatology to each one of the PepMV strains.Ravnikar, M.; Blystad, D.; Van Der Vlugt, R.; Alfaro FernĂĄndez, AO.; Del Carmen Cordoba, M.; Bese, G.; Hristova, D.... (2015). Host range and symptomatology of Pepino mosaic virus strains occurring in Europe. European Journal of Plant Pathology. 143(1):43-56. doi:10.1007/s10658-015-0664-1S43561431Alfaro-FernĂĄndez, A., CĂłrdoba-SellĂ©s, M. C., Herrera-VĂĄsquez, J. A., CebriĂĄn, M. C., & JordĂĄ, C. (2009). Transmission of Pepino mosaic virus by the fungal vector Olpidium virulentus. Journal of Phytopathology, 158, 217–226.Charmichael, D. J., Rey, M. E. C., Naidoo, S., Cook, G., & van Heerden, S. W. (2011). First report of Pepino mosaic virus infecting tomato in South Africa. Plant Disease, 95(6), 767.2.CĂłrdoba, M. C., MartĂ­nez-Priego, L., & JordĂĄ, C. (2004). New natural hosts of Pepino mosaic virus in Spain. Plant Disease, 88, 906.CĂłrdoba-SellĂ©s, M. C., GarcĂ­a-RĂĄndez, A., Alfaro-FernĂĄndez, A., & JordĂĄ-GutiĂ©rrez, C. (2007). Seed transmission of pepino mosaic virus and efficacy of tomato seed disinfection treatments. Plant Disease, 91, 1250–1254.Efthimiou, K. E., Gatsios, A. P., Aretakis, K. C., Papayannis, L. C., & Katis, N. I. (2011). First report of Pepino mosaic virus infecting greenhouse cherry tomato in Greece. Plant Disease, 95(1), 78.2.Fakhro, A., von Bargen, S., Bandte, M., BĂŒttner, C., Franken, P., & Schwarz, D. (2011). Susceptibility of different plant species and tomato cultivars to two isolates of Pepino mosaic virus. European Journal of Plant Pathology, 129, 579–590.GĂłmez, P., Sempere, R. N., Elena, S. F., & Aranda, M. A. (2009). Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. Journal of Virology, 83, 12378–12387.Hanssen, I. M., Paeleman, A., Wittemans, L., Goen, K., Lievens, B., Bragard, C., Vanachter, A. C. R. C., & Thomma, B. P. H. J. (2008). Genetic characterization of Pepino mosaic virus isolates from Belgian greenhouse tomatoes reveals genetic recombination. European Journal of Plant Pathology, 121, 131–146.Hanssen, I. M., Paeleman, A., Vandewoestijne, E., Van Bergen, L., Bragard, C., Lievens, B., Vanachter, A. C. R. C., & Thomma, B. P. H. J. (2009). Pepino mosaic virus isolates and differential symptomatology in tomato. Plant Pathology, 58, 450–460.Hanssen, I. M., Mumford, R., Blystad, D.-G., Cortez, I., HasiĂłw-Jaroszewska, B., Hristova, D., PagĂĄn, I., Pereira, A.-M., Peters, J., Pospieszny, H., Ravnikar, M., Stijger, I., Tomassoli, L., Varveri, C., van der Vlugt, R., & Nielsen, S. L. (2010). Seed transmission of Pepino mosaic virus in tomato. European Journal of Plant Pathology, 126, 145–152.HasiĂłw-Jaroszewska, B., Borodynko, N., Jackowiak, P., Figlerowicz, M., & Pospieszny, H. (2010a). Pepino mosaic virus – a pathogen of tomato crops in Poland: biology, evolution and diagnostics. Journal of Plant Protection Research, 50, 470–476.HasiĂłw-Jaroszewska, B., Jackowiak, P., Borodynko, N., Figlerowicz, M., & Pospieszny, H. (2010b). Quasispecies nature of Pepino mosaic virus and its evolutionary dynamics. Virus Genes, 41, 260–267.Jeffries, C. J. (1998). FAO/IPGRI technical guidelines for the safe movement of germplasm no. 19. Potato. Food and agriculture organization of the United Nations, Rome/International Plant Genetic Resources Institute, Rome pp 177Jones, R. A. C., Koenig, R., & Lesemann, D. E. (1980). Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Annals of Applied Biology, 94, 61–68.JordĂĄ, C., LĂĄzaro PĂ©rez, A., & MartĂ­nez Culebras, P. (2001). First report of Pepino mosaic virus on natural hosts. Plant Disease, 85, 1292.King, A. M. Q., Adams, M. J., Carstens, E. B., Lefkowitz, E. J., (eds). (2012). potexvirus, pp 912–915, in virus taxonomy, classification and nomenclature of viruses; ninth report of the international committee on taxonomy of viruses (p 1327) London, UK: Elsevier Academic PressLing, K.-S., & Zhang, W. (2011). First report of Pepino mosaic virus infecting tomato in Mexico. Plant Disease, 95(8), 1035.Martin, J., & Mousserion, C. (2002). Potato varieties which are sensitive to the tomato strains of Pepino mosaic virus (PepMV). Phytoma DĂ©fence VĂ©gĂ©taux, 552, 26–28.Mehle, N., Gutierrez-Aguirre, I., Prezelj, N., Delić, D., Vidic, U., & Ravnikar, M. (2014). Survival and transmission of potato virus Y, pepino mosaic virus, and potato spindle tuber viroid in water. Applied and Environmental Microbiology, 80(4), 1455–1462.Moreno-PĂ©rez, M. G., PagĂĄn, I., AragĂłn-Caballero, L., CĂĄceres, F., Aurora Fraile, A., & GarcĂ­a-Arenal, F. (2014). Ecological and genetic determinants of Pepino mosaic virus emergence. Journal of Virology, 88(6), 3359–3368.NoĂ«l, P., Hance, T., & Bragard, C. (2014). Transmission of the pepino mosaic virus by whitefly. European Journal of Plant Pathology, 138, 23–27.Pagan, I., Cordoba-Selles, M. D., Martinez-Priego, L., Fraile, A., Malpica, J. M., Jorda, C., & Garcia-Arenal, F. (2006). Genetic structure of the population of pepino mosaic virus infecting tomato crops in Spain. Phytopathology, 96, 274–279.Papayiannis, L. C., Kokkinos, C. D., & Alfaro-FernĂĄndez, A. (2012). Detection, characterization and host range studies of Pepino mosaic virus in Cyprus. European Journal of Plant Pathology, 132, 1–7.Pospieszny, H., Haslow, B., & Borodynko, N. (2008). Characterization of two Polish isolates of Pepino mosaic virus. European Journal of Plant Pathology, 122, 443–445.Salomone, A., & Roggero, P. (2002). Host range, seed transmission and detection by ELISA and lateral flow of an Italian isolate of Pepino mosaic virus. Journal of Plant Pathology, 84, 65–68.Samson, R. G., Allen, T. C., & Whitworth, J. L. (1993). Evaluation of direct tissue blotting to detect potato viruses. American Potato Journal, 70, 257–265.Schwarz, D., Beuch, U., Bandte, M., Fakhro, A., BĂŒttner, C., & Obermeier, C. (2010). Spread and interaction of pepino mosaic virus (PepMV) and pythium aphanidermatum in a closed nutrient solution recirculation system: effects on tomato growth and yield. Plant Pathology, 59(3), 443–452.Shipp, J. L., Buitenhuis, R., Stobbs, L., Wang, K., Kim, W. S., & Ferguson, G. (2008). Vectoring of pepino mosaic virus by bumble-bees in tomato greenhouses. Annals of Applied Biology, 153, 149–155.Van der Vlugt, R. A. A. (2009). Pepino mosaic virus (review). Hellenic Plant Protection Journal, 2, 47–56.Van der Vlugt, R. A. A., & Stijger, C. C. M. M. (2008). Pepino mosaic virus. In B. W. J. Mahy & M. H. V. Van Regenmortel (Eds.), Encyclopedia of virology (5th ed., pp. 103–108). Wageningen: Oxford Elsevier.Van der Vlugt, R. A. A., Stijger, C. C. M. M., Verhoeven, J. T. J., & Lesemann, D.-E. (2000). First report of Pepino mosaic virus on tomato. Plant Disease, 84, 103.Van der Vlugt, R. A. A., Cuperus, C., Vink, J., Stijger, I. C. M. M., Lesemann, D.-E., Verhoeven, J. T. J., & Roenhorst, J. W. (2002). Identification and characterization of Pepino mosaic potexvirus in tomato. Bulletin EPPO/EPPO Bulletin, 32, 503–508.Verchot-Lubicz, J., Chang-Ming, Y., & Bamunusinghe, D. (2007). Molecular biology of potexviruses: recent advances. Journal of General Virology, 88(6), 1643–1655.Verhoeven, J. T. H. J., van der Vlugt, R., & Roenhorst, J. W. (2003). High similarity between tomato isolates of pepino mosaic virus suggests a common origin. European Journal of Plant Pathology, 109, 419–425.Werkman, A.W., & Sansford, C.E. (2010). Pest risk analysis for pepino mosaic virus for the EU. Deliverable Report 4.3. EU Sixth Framework project PEPEIRA. http:// www.pepeira.com .Wright, D., & Mumford, R. (1999). Pepino mosaic potexvirus (PepMV): first records in tomato in the United Kingdom. Plant disease notice (89th ed.). York, UK: Central Science Laboratory

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S
    • 

    corecore