6 research outputs found

    Hyperglycaemia induces metabolic dysfunction and glycogen accumulation in pancreatic β-cells

    Get PDF
    Insulin secretion from pancreatic β-cells is impaired in all forms of diabetes. The resultant hyperglycaemia has deleterious effects on many tissues, including β-cells. Here we use a mouse model of human neonatal diabetes to show that chronic hyperglycemia impairs glucose metabolism and alters expression of metabolic genes in pancreatic islets. This results in marked glycogen accumulation, and increased apoptosis in β-cells. Sulphonylurea therapy rapidly normalizes blood glucose levels, dissipates glycogen stores, increases autophagy, and restores β-cell metabolism. Insulin therapy has the same effect but with slower kinetics. Similar changes are observed in mice expressing an activating glucokinase mutation, in in vitro models of hyperglycaemia, and in islets from type-2 diabetes patients. Altered β-cell metabolism may underlie both the progressive impairment of insulin secretion and reduced β-cell mass in diabetes
    corecore