400 research outputs found

    Creation of two-dimensional coulomb crystals of ions in oblate Paul traps for quantum simulations

    Get PDF
    We develop the theory to describe the equilibrium ion positions and phonon modes for a trapped ion quantum simulator in an oblate Paul trap that creates two-dimensional Coulomb crystals in a triangular lattice. By coupling the internal states of the ions to laser beams propagating along the symmetry axis, we study the effective Ising spin-spin interactions that are mediated via the axial phonons and are less sensitive to ion micromotion. We find that the axial mode frequencies permit the programming of Ising interactions with inverse power law spin-spin couplings that can be tuned from uniform to r3r^{-3} with DC voltages. Such a trap could allow for interesting new geometrical configurations for quantum simulations on moderately sized systems including frustrated magnetism on triangular lattices or Aharonov-Bohm effects on ion tunneling. The trap also incorporates periodic boundary conditions around loops which could be employed to examine time crystals.Comment: 17 pages, 8 figures, submitted to the journal EPJ Quantum Technology for the thematic Series on Quantum Simulation

    Tensor Coordinates in Noncommutative Mechanics

    Full text link
    A consistent classical mechanics formulation is presented in such a way that, under quantization, it gives a noncommutative quantum theory with interesting new features. The Dirac formalism for constrained Hamiltonian systems is strongly used, and the object of noncommutativity θij{\mathbf \theta}^{ij} plays a fundamental rule as an independent quantity. The presented classical theory, as its quantum counterpart, is naturally invariant under the rotation group SO(D)SO(D).Comment: 12 pages, Late

    Scalar field theory on kappa-Minkowski spacetime and translation and Lorentz invariance

    Full text link
    We investigate the properties of kappa-Minkowski spacetime by using representations of the corresponding deformed algebra in terms of undeformed Heisenberg-Weyl algebra. The deformed algebra consists of kappa-Poincare algebra extended with the generators of the deformed Weyl algebra. The part of deformed algebra, generated by rotation, boost and momentum generators, is described by the Hopf algebra structure. The approach used in our considerations is completely Lorentz covariant. We further use an adventages of this approach to consistently construct a star product which has a property that under integration sign it can be replaced by a standard pointwise multiplication, a property that was since known to hold for Moyal, but not also for kappa-Minkowski spacetime. This star product also has generalized trace and cyclic properties and the construction alone is accomplished by considering a classical Dirac operator representation of deformed algebra and by requiring it to be hermitian. We find that the obtained star product is not translationally invariant, leading to a conclusion that the classical Dirac operator representation is the one where translation invariance cannot simultaneously be implemented along with hermiticity. However, due to the integral property satisfied by the star product, noncommutative free scalar field theory does not have a problem with translation symmetry breaking and can be shown to reduce to an ordinary free scalar field theory without nonlocal features and tachionic modes and basicaly of the very same form. The issue of Lorentz invariance of the theory is also discussed.Comment: 22 pages, no figures, revtex4, in new version comments regarding translation invariance and few references are added, accepted for publication in Int. J. Mod. Phys.

    KMS states on Quantum Grammars

    Get PDF
    We consider quantum (unitary) continuous time evolution of spins on a lattice together with quantum evolution of the lattice itself. In physics such evolution was discussed in connection with quantum gravity. It is also related to what is called quantum circuits, one of the incarnations of a quantum computer. We consider simpler models for which one can obtain exact mathematical results. We prove existence of the dynamics in both Schroedinger and Heisenberg pictures, construct KMS states on appropriate C*-algebras. We show (for high temperatures) that for each system where the lattice undergoes quantum evolution, there is a natural scaling leading to a quantum spin system on a fixed lattice, defined by a renormalized Hamiltonian.Comment: 22 page

    Albedo of firn and bare ice near the Trans-Antarctic Mountains to represent sea-glaciers on the tropical ocean of Snowball Earth

    Get PDF
    第6回極域科学シンポジウム[OM] 極域気水圏11月16日(月) 統計数理研究所 セミナー室2(D304

    Dynamics of collapsing and exploding Bose-Einstein condensate

    Full text link
    Recently, Donley et al. performed an experiment on the dynamics of collapsing and exploding Bose-Einstein condensates by suddenly changing the scattering length of atomic interaction to a large negative value on a preformed repulsive condensate of 85^{85}Rb atoms in an axially symmetric trap. Consequently, the condensate collapses and ejects atoms via explosions. We show that the accurate numerical solution of the time-dependent Gross-Pitaevskii equation with axial symmetry can explain some aspects of the dynamics of the collapsing condensate.Comment: 4 latex pages, 3 postscript figure

    Kappa-deformed Snyder spacetime

    Full text link
    We present Lie-algebraic deformations of Minkowski space with undeformed Poincare algebra. These deformations interpolate between Snyder and kappa-Minkowski space. We find realizations of noncommutative coordinates in terms of commutative coordinates and derivatives. Deformed Leibniz rule, the coproduct structure and star product are found. Special cases, particularly Snyder and kappa-Minkowski in Maggiore-type realizations are discussed. Our construction leads to a new class of deformed special relativity theories.Comment: 12 pages, no figures, LaTeX2e class file, accepted for publication in Modern Physics Letters

    Formulation, Interpretation and Application of non-Commutative Quantum Mechanics

    Full text link
    In analogy with conventional quantum mechanics, non-commutative quantum mechanics is formulated as a quantum system on the Hilbert space of Hilbert-Schmidt operators acting on non-commutative configuration space. It is argued that the standard quantum mechanical interpretation based on Positive Operator Valued Measures, provides a sufficient framework for the consistent interpretation of this quantum system. The implications of this formalism for rotational and time reversal symmetry are discussed. The formalism is applied to the free particle and harmonic oscillator in two dimensions and the physical signatures of non commutativity are identified.Comment: 11 page
    corecore