295 research outputs found

    Synthesis, crystal structure, structural phase transition and dielectric properties of new organic-inorganic hybrid compound: (C6H5CH2N(C2H5)3)CdCl3

    Get PDF
    Single crystal of new organic-inorganic hybrid compound, (C6H5CH2N(C2H5)3)CdCl3, was successfully synthesis by slow evaporation method at room temperature and characterized by divers techniques such as single X-ray diffraction, Infrared and Raman spectroscopy, Thermal analysis (TGA and DSC), Variable temperature X-ray powder diffraction (VT‒XRPD) and dielectric properties. The results of single X-ray studies demonstrated that the title compound crystallizes in the monoclinic system with the space group P21/n. The atomic arrangement of the crystal structure can be described as 1D polymeric inorganic chain CdCl5 along the a-axis between which the organic groups are located. It consists on isolated square-pyramidal [CdCl5]3− anions and triethylbenzylammonuim (C6H5CH2N(C2H5)3)+ cations, which are interconnected via C−H…Cl weak hydrogen bonds forming 3D network. Investigation of RT‒XRPD was carried out to identify the purity of the bulk material. Hirshfeld surface and fingerprint plots reveal that the structure is dominated by H…H and H…Cl/Cl…H contacts. It is found that the (C6H5CH2N(C2H5)3)CdCl3 material displays a irreversible structural phase transition at T = 413 K. This latter was confirmed by means of variable temperature X- ray powder diffraction and dielectric permittivity (ε′andε′)

    Reduction of seafood processing wastewater using technologies enhanced by swim–bed technology

    Get PDF
    The increasing growth of the seafood processing industries considerably requires more industrial process activities and water consumption. It is estimated that approximately 10–40 m3 of wastewater is generated from those industries for processing one-tonne of raw materials. Due to limitations and regulations in natural resources utilization, a suitable and systematic wastewater treatment plant is very important to meet rigorous discharge standards. As a result of food waste biodegradability, the biological treatment and some extent of swim-bed technology, including a novel acryl-fibre (biofilm) material might be used effectively to meet the effluent discharge criteria. This chapter aims to develop understanding on current problems and production of the seafood wastewater regarding treatment efficiency and methods of treatment

    Adoption Studies on Improved Chickpea Varieties in Ethiopia

    Get PDF
    Chickpea (Cicer arietinum L.) is one of the most important food legumes in Ethiopia contributing to about 17% of the countries’ total pulse production. Ethiopia is the largest chickpea growing country in Africa, with a share of about 37% in area and 48% in production. During 2003/2004, Ethiopia produced 135,930 m t of chickpea from an area of 168,089 ha. There has been an increase of 12% in area and 34% in production since 1981/1982. Most of the chickpea production goes for domestic consumption. However, there has been substantial export of chickpea during the past five years, with maximum of 48,549 t (valued at US$14.7 million) during 2002 (FAOSTAT 2005). Chickpea is an important source of dietary protein and minerals for many Ethiopians who cannot afford animal products. It is used in various forms, e.g., green seeds, dried seeds, dehulled-splits and flour. Chickpea straw is highly valued as animal feed. The farmers recognize the importance of legumes in improving soil fertility and thus grow chickpea and other legumes in rotation with cereals. The Debre Zeit Agricultural Research Center (DZARC) has been the premier institute for chickpea research in Ethiopia. It has collaborated with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India, and the International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria, in chickpea improvement and released 10 chickpea varieties in Ethiopia. Of these, three (DZ-10-4, DZ-10-11 and Dubie) were developed from its own breeding materials, five (Mariye, Worku, Akaki, Shasho and Chefe) from the breeding materials supplied by ICRISAT, and two (Arerti and Habru) from the breeding materials supplied by ICARDA.........

    Photoswitchable diacylglycerols enable optical control of protein kinase C.

    Get PDF
    Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    Get PDF
    BACKGROUND: The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. METHODOLOGY/PRINCIPAL FINDINGS: We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. CONCLUSIONS: These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment

    Ethiopian indigenous goats offer insights into past and recent demographic dynamics and localadaptation in sub-Saharan African goats

    Get PDF
    Abstract Knowledge on how adaptive evolution and human socio‐cultural and economic interests shaped livestock genomes particularly in sub‐Saharan Africa remains limited. Ethiopia is in a geographic region that has been critical in the history of African agriculture with ancient and diverse human ethnicity and bio‐climatic conditions. Using 52K genome‐wide data analysed in 646 individuals from 13 Ethiopian indigenous goat populations, we observed high levels of genetic variation. Although runs of homozygosity (ROH) were ubiquitous genome‐wide, there were clear differences in patterns of ROH length and abundance and in effective population sizes illustrating differences in genome homozygosity, evolutionary history, and management. Phylogenetic analysis incorporating patterns of genetic differentiation and gene flow with ancestry modelling highlighted past and recent intermixing and possible two deep ancient genetic ancestries that could have been brought by humans with the first introduction of goats in Africa. We observed four strong selection signatures that were specific to Arsi‐Bale and Nubian goats. These signatures overlapped genomic regions with genes associated with morphological, adaptation, reproduction and production traits due possibly to selection under environmental constraints and/or human preferences. The regions also overlapped uncharacterized genes, calling for a comprehensive annotation of the goat genome. Our results provide insights into mechanisms leading to genome variation and differentiation in sub‐Saharan Africa indigenous goats

    RAGE Mediates Accelerated Diabetic Vein Graft Atherosclerosis Induced by Combined Mechanical Stress and AGEs via Synergistic ERK Activation

    Get PDF
    Aims/Hypothesis: Diabetes with hypertension rapidly accelerates vascular disease, but the underlying mechanism remains unclear. We evaluated the hypothesis that the receptor of advanced glycation end products (RAGE) might mediate combined signals initiated by diabetes-related AGEs and hypertension-induced mechanical stress as a common molecular sensor. Methods: In vivo surgical vein grafts created by grafting vena cava segments from C57BL/6J mice into the common carotid arteries of streptozotocin (STZ)-treated and untreated isogenic mice for 4 and 8 weeks were analyzed using morphometric and immunohistochemical techniques. In vitro quiescent mouse vascular smooth muscle cells (VSMCs) with either knockdown or overexpression of RAGE were subjected to cyclic stretching with or without AGEs. Extracellular signalregulated kinase (ERK) phosphorylation and Ki-67 expression were investigated. Results: Significant increases in neointimal formation, AGE deposition, Ki-67 expression, and RAGE were observed in the vein grafts of STZ-induced diabetic mice. The highest levels of ERK phosphorylation and Ki-67 expression in VSMCs were induced by simultaneous stretch stress and AGE exposure. The synergistic activation of ERKs and Ki-67 in VSMCs was significantly inhibited by siRNA-RAGE treatment and enhanced by over-expression of RAGE. Conclusion: RAGE may mediate synergistically increased ERK activation and VSMC proliferation induced by mechanica

    Variability in the analysis of a single neuroimaging dataset by many teams

    Get PDF
    Data analysis workflows in many scientific domains have become increasingly complex and flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) results, the same dataset was independently analyzed by 70 teams, testing nine ex-ante hypotheses. The flexibility of analytic approaches is exemplified by the fact that no two teams chose identical workflows to analyze the data. This flexibility resulted in sizeable variation in hypothesis test results, even for teams whose statistical maps were highly correlated at intermediate stages of their analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Importantly, meta-analytic approaches that aggregated information across teams yielded significant consensus in activated regions across teams. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset. Our findings show that analytic flexibility can have substantial effects on scientific conclusions, and demonstrate factors related to variability in fMRI. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for multiple analyses of the same data. Potential approaches to mitigate issues related to analytical variability are discussed
    corecore