1,612 research outputs found

    Low, Milky-Way like, Molecular Gas Excitation of Massive Disk Galaxies at z~1.5

    Full text link
    We present evidence for Milky-Way-like, low-excitation molecular gas reservoirs in near-IR selected massive galaxies at z~1.5, based on IRAM Plateau de Bure Interferometer CO[3-2] and NRAO Very Large Array CO[1-0] line observations for two galaxies that had been previously detected in CO[2-1] emission. The CO[3-2] flux of BzK-21000 at z=1.522 is comparable within the errors to its CO[2-1] flux, implying that the CO[3-2] transition is significantly sub-thermally excited. The combined CO[1-0] observations of the two sources result in a detection at the 3 sigma level that is consistent with a higher CO[1-0] luminosity than that of CO[2-1]. Contrary to what is observed in submillimeter galaxies and QSOs, in which the CO transitions are thermally excited up to J>=3, these galaxies have low-excitation molecular gas, similar to that in the Milky Way and local spirals. This is the first time that such conditions have been observed at high redshift. A Large Velocity Gradient analysis suggests that molecular clouds with density and kinetic temperature comparable to local spirals can reproduce our observations. The similarity in the CO excitation properties suggests that a high, Milky-Way-like, CO to H_2 conversion factor could be appropriate for these systems. If such low-excitation properties are representative of ordinary galaxies at high redshift, centimeter telescopes such as the Expanded Very Large Array and the longest wavelength Atacama Large Millimeter Array bands will be the best tools for studying the molecular gas content in these systems through the observations of CO emission lines.Comment: 5 pages, 4 figures. ApJ Letters in pres

    Near-IR bright galaxies at z~2. Entering the spheroid formation epoch ?

    Full text link
    Spectroscopic redshifts have been measured for 9 K-band luminous galaxies at 1.7 < z < 2.3, selected with Ks < 20 in the "K20 survey" region of the Great Observatories Origins Deep Survey area. Star formation rates (SFRs) of ~100-500 Msun/yr are derived when dust extinction is taken into account. The fitting of their multi-color spectral energy distributions indicates stellar masses M ~ 10^11 Msun for most of the galaxies. Their rest-frame UV morphology is highly irregular, suggesting that merging-driven starbursts are going on in these galaxies. Morphologies tend to be more compact in the near-IR, a hint for the possible presence of older stellar populations. Such galaxies are strongly clustered, with 7 out of 9 belonging to redshift spikes, which indicates a correlation length r_0 ~ 9-17 h^-1 Mpc (1 sigma range). Current semianalytical models of galaxy formation appear to underpredict by a large factor (about 30) the number density of such a population of massive and powerful starburst galaxies at z ~ 2. The high masses and SFRs together with the strong clustering suggest that at z ~ 2 we may have started to explore the major formation epoch of massive early-type galaxies.Comment: accepted on June 17. To appear on ApJ Letter

    Modelling CO emission from hydrodynamic simulations of nearby spirals, starbursting mergers, and high-redshift galaxies

    Get PDF
    We model the intensity of emission lines from the CO molecule, based on hydrodynamic simulations of spirals, mergers, and high-redshift galaxies with very high resolutions (3pc and 10^3 Msun) and detailed models for the phase-space structure of the interstellar gas including shock heating, stellar feedback processes and galactic winds. The simulations are analyzed with a Large Velocity Gradient (LVG) model to compute the local emission in various molecular lines in each resolution element, radiation transfer and opacity effects, and the intensity emerging from galaxies, to generate synthetic spectra for various transitions of the CO molecule. This model reproduces the known properties of CO spectra and CO-to-H2 conversion factors in nearby spirals and starbursting major mergers. The high excitation of CO lines in mergers is dominated by an excess of high-density gas, and the high turbulent velocities and compression that create this dense gas excess result in broad linewidths and low CO intensity-to-H2 mass ratios. When applied to high-redshift gas-rich disks galaxies, the same model predicts that their CO-to-H2 conversion factor is almost as high as in nearby spirals, and much higher than in starbursting mergers. High-redshift disk galaxies contain giant star-forming clumps that host a high-excitation component associated to gas warmed by the spatially-concentrated stellar feedback sources, although CO(1-0) to CO(3-2) emission is overall dominated by low-excitation gas around the densest clumps. These results overall highlight a strong dependence of CO excitation and the CO-to-H2 conversion factor on galaxy type, even at similar star formation rates or densities. The underlying processes are driven by the interstellar medium structure and turbulence and its response to stellar feedback, which depend on global galaxy structure and in turn impact the CO emission properties.Comment: A&A in pres

    The Evolution of Early-type Field Galaxies Selected from a NICMOS Map of the Hubble Deep Field North

    Full text link
    The redshift distribution of well-defined samples of distant early-type galaxies offers a means to test the predictions of monolithic and hierarchical galaxy formation scenarios. NICMOS maps of the entire Hubble Deep Field North in the F110W and F160W filters, when combined with the available WFPC2 data, allow us to calculate photometric redshifts and determine the morphological appearance of galaxies at rest-frame optical wavelengths out to z ~ 2.5. Here we report results for two subsamples of early-type galaxies, defined primarily by their morphologies in the F160W band, which were selected from the NICMOS data down to H160_{AB} < 24.0. The observed redshift distributions of our two early-type samples do not match that predicted by a monolithic collapse model, which shows an overabundance at z > 1.5. A hierarchical formation model better matches the redshift distribution of the HDF-N early-types at z > 1.5, but still does not adequately describe the observed early-types. The hierarchical model predicts significantly bluer colors on average than the observed early-type colors, and underpredicts the observed number of early-types at z < 1. [abridged]Comment: Accepted for publication in the Astronomical Journal; 54 pages, 21 figures. Figures 10 and 11 are included separately in JPEG forma

    A new photometric technique for the joint selection of star-forming and passive galaxies at 1.4<z<2.5

    Get PDF
    A simple two color selection based on B-, z-, and K- band photometry is proposed for culling galaxies at 1.4<z<2.5 in K-selected samples and classifying them as star-forming or passive systems. The method is calibrated on the highly complete spectroscopic redshift database of the K20 survey, verified with simulations and tested on other datasets. Requiring BzK=(z-K)-(B-z)>-0.2 (AB) allows to select actively star-forming galaxies at z>1.4, independently on their dust reddening. Instead, objects with BzK<-0.2 and (z-K)>2.5 (AB) colors include passively evolving galaxies at z>1.4, often with spheroidal morphologies. Simple recipes to estimate the reddening, SFRs and masses of BzK-selected galaxies are derived, and calibrated on K<20 galaxies. Based on their UV (reddening-corrected), X-ray and radio luminosities, the BzK-selected star-forming galaxies with K<20 turn out to have average SFR ~ 200 Msun yr^-1, and median reddening E(B-V)~0.4. Besides missing the passively evolving galaxies, the UV selection appears to miss some relevant fraction of the z~2 star-forming galaxies with K<20, and hence of the (obscured) star-formation rate density at this redshift. The high SFRs and masses add to other existing evidence that these z=2 star-forming galaxies may be among the precursors of z=0 early-type galaxies. Theoretical models cannot reproduce simultaneously the space density of both passively evolving and highly star-forming galaxies at z=2. In view of Spitzer Space Telescope observations, an analogous technique based on the RJL photometry is proposed to complement the BzK selection and to identify massive galaxies at 2.5<z<4.0. These color criteria should help in completing the census of the stellar mass and of the star-formation rate density at high redshift (abridged).Comment: 19 pages, 17 figures, to appear on ApJ (20 December 2004 issue

    A wide area survey for high-redshift massive galaxies. I. Number counts and clustering of BzKs and EROs

    Full text link
    We have combined deep BRIz' imaging over 2x940 arcmin^2 fields obtained with the Suprime-Cam on the Subaru telescope with JKs imaging with the SOFI camera at the New Technology Telescope to search for high-redshift massive galaxies. K-band selected galaxies have been identified over an area of ~920 arcmin^2 to K_Vega=19.2, of which 320 arcmin^2 are complete to K_Vega=20. The BzK selection technique was used to obtain complete samples of ~500 candidate massive star-forming galaxies (sBzKs) and ~160 candidate massive, passively-evolving galaxies (pBzKs), both at 1.4 5 criterion we also identified ~850 extremely red objects (EROs). The surface density of sBzKs and pBzKs is found to 1.20+/-0.05 arcmin^{-2} and 0.38+/-0.03 arcmin^{-2}, respectively. Both sBzKs and pBzKs are strongly clustered, at a level at least comparable to that of EROs, with pBzKs appearing more clustered than sBzKs. We estimate the reddening, star formation rates (SFRs) and stellar masses (M_*) of the sBzKs, confirming that to K_Vega~20 median values are M_*~10^{11}M_sun, SFR 190M_sun yr^{-1}, and E(B-V)~0.44. The most massive sBzKs are also the most actively star-forming, an effect which can be seen as a manifestation of downsizing at early epochs. The space density of massive pBzKs at z~1.4-2 is 20%+/-7% that of similarly massive early-type galaxies at z~0, and similar to that of sBzKs of the same mass. We argue that star formation quenching in these sBzKs will result in nearly doubling the space density of massive early-type galaxies, thus matching their local density.Comment: 19 pages, 13 figures, accepted by ApJ. While checking the proofs we became aware of a material mistake of non-trivial scientific relevance. In the original it was reported that the comoving volume density of passive BzK-selected galaxies with =1.7 and more massive than 10^{11}M_sun was 45%+/-15% of the local number density of similarly massive early-type galaxies. This fraction actually turns out to be 20%+/-7%. Section 6.4, point 5 in section 7, and the abstract have been modified accordingl
    • …
    corecore