843 research outputs found
Quantum measurements of atoms using cavity QED
Generalized quantum measurements are an important extension of projective or
von Neumann measurements, in that they can be used to describe any measurement
that can be implemented on a quantum system. We describe how to realize two
non-standard quantum measurements using cavity quantum electrodynamics (QED).
The first measurement optimally and unabmiguously distinguishes between two
non-orthogonal quantum states. The second example is a measurement that
demonstrates superadditive quantum coding gain. The experimental tools used are
single-atom unitary operations effected by Ramsey pulses and two-atom
Tavis-Cummings interactions. We show how the superadditive quantum coding gain
is affected by errors in the field-ionisation detection of atoms, and that even
with rather high levels of experimental imperfections, a reasonable amount of
superadditivity can still be seen. To date, these types of measurement have
only been realized on photons. It would be of great interest to have
realizations using other physical systems. This is for fundamental reasons, but
also since quantum coding gain in general increases with code word length, and
a realization using atoms could be more easily scaled than existing
realizations using photons.Comment: 10 pages, 5 figure
Glutathione and the intracellular labile heme pool
One candidate for the cytosolic labile iron pool is iron(II)glutathione. There is also a widely held opinion that an equivalent cytosolic labile heme pool exists and that this pool is important for the intracellular transfer of heme. Here we describe a study designed to characterise conjugates that form between heme and glutathione. In contrast to hydrated iron(II), heme reacts with glutathione, under aerobic conditions, to form the stable hematin–glutathione complex, which contains iron(III). Thus, glutathione is clearly not the cytosolic ligand for heme, indeed we demonstrate that the rate of heme degradation is enhanced in the presence of glutathione. We suggest that the concentration of heme in the cytosol is extremely low and that intracellular heme transfer occurs via intracellular membrane structures. Should any heme inadvertently escape into the cytosol, it would be rapidly conjugated to glutathione thereby protecting the cell from the toxic effects of heme
Coherent Parton Showers with Local Recoils
We outline a new formalism for dipole-type parton showers which maintain
exact energy-momentum conservation at each step of the evolution. Particular
emphasis is put on the coherence properties, the level at which recoil effects
do enter and the role of transverse momentum generation from initial state
radiation. The formulated algorithm is shown to correctly incorporate coherence
for soft gluon radiation. Furthermore, it is well suited for easing matching to
next-to-leading order calculations.Comment: 24 pages, 3 figure
When do franchisors select entrepreneurial franchisees? An organizational identity perspective
In spite of the acknowledged importance of the franchisee selection process, only a few empirical studies have examined this research area. This paper employs organizational identity theory to explain when the franchisor desires to select specifically franchisees that have the potential for entrepreneurial behavior. A mail questionnaire survey was utilized to collect data from a sample of franchisors in the UK. The results revealed that the systems that select entrepreneurial franchisees are those that have entrepreneurial values as part of their organizational identity, as reflected in the institutionalized support given by the franchisor for entrepreneurial activities. Additionally, we found that the performance of the franchise system is positively affected where the franchisor seeks to select franchisees whose entrepreneurial values are congruent with those of the system
Imaging high-dimensional spatial entanglement with a camera
The light produced by parametric down-conversion shows strong spatial
entanglement that leads to violations of EPR criteria for separability.
Historically, such studies have been performed by scanning a single-element,
single-photon detector across a detection plane. Here we show that modern
electron-multiplying charge-coupled device cameras can measure correlations in
both position and momentum across a multi-pixel field of view. This capability
allows us to observe entanglement of around 2,500 spatial states and
demonstrate Einstein-Podolsky-Rosen type correlations by more than two orders
of magnitude. More generally, our work shows that cameras can lead to important
new capabilities in quantum optics and quantum information science.Comment: 5 pages, 4 figure
Quantifying traffic, biomass burning and secondary source contributions to atmospheric particle number concentrations at urban and suburban sites
In this study, we propose a new approach to determine the contributions of primary vehicle exhaust (N-1(ff)), primary biomass burning (N-1(bb)) and secondary (N-2) particles to mode segregated particle number concentrations. We used simultaneous measurements of aerosol size distribution in the 12-600 nm size range and black carbon (BC) concentration obtained during winter period at urban and suburban sites influenced by biomass burning (BB) emissions. As expected, larger aerosol number concentrations in the 12-25 and 25-100 nm size ranges are observed at the urban site compared to the suburban site. However, similar concentrations of BC are observed at both sites due to the larger contribution of BB particles to the observed BC at suburban (34%) in comparison to urban site (23%). Due to this influence of BB emissions in our study area, the application of the Rodriguez and Cuevas (2007) method, which was developed for areas mainly influenced by traffic emissions, leads to an overestimation of the primary vehicle exhaust particles concentrations by 18% and 26% in urban and suburban sites, respectively, as compared to our new proposed approach. The results show that (1) N-2 is the main contributor in all size ranges at both sites, (2) N-1(ff) is the main contributor to primary particles (>70%) in all size ranges at both sites and (3) N-1(bb) contributes significantly to the primary particles in the 25-100 and 100-600 nm size ranges at the suburban (24% and 28%, respectively) and urban (13% and 20%, respectively) sites. At urban site, the N-1(ff) contribution shows a slight increase with the increase of total particle concentration, reaching a contribution of up to 65% at high ambient aerosol concentrations. New particle loination events are an important aerosol source during summer noon hours but, on average, these events do not implicate a considerable contribution to urban particles. (C) 2021 Elsevier B.V. All rights reserved.Peer reviewe
Comparative Study on Liver Enzymes Activity and Blood Group Variations
The aim of this study is to determine the activities of some selected liver enzymes amongst apparently healthy subjects of different blood groups. The study involved 95 apparently healthy students of Ambrose Alli University, Ekpoma, Edo State, Nigeria, between the ages of 18-30, and distributed as follows; blood group O (30), group AB (18), group A (22) and blood group B (25). Blood samples were collected from the antecubital vein and separated to obtain serum. The activities of Alkaline phosphatase (ALP), Aspartate amino transferase (AST) and Alanine amino transferase (ALT) in the serum were determined using the spectrophometric method and the results were compared using SPSS (version 15). The results showed that the activities of AST and ALT were not significantly different (p>0.05) among the blood groups. However, the activity of ALP was significantly different (p<0.05) from those of blood group A, AB and O. Based on the findings of this study therefore, ABO blood group variations may have an influence on some liver enzymes activity.Keywords: ABO Blood Groups, Liver enzymes, Liver functio
Sub-0.6 eV Inverted Metamorphic GaInAs Cells Grown on InP and GaAs Substrates for Thermophotovoltaics and Laser Power Conversion
We present inverted metamorphic Ga0.3In0.7As photovoltaic converters with
sub-0.60 eV bandgaps grown on InP and GaAs substrates. The compositionally
graded buffers in these devices have threading dislocation densities of
1.3x10^6 cm^-2 and 8.9x10^6 cm^-2 on InP and GaAs, respectively. The devices
generate open-circuit voltages of 0.386 V and 0.383 V, respectively, at a
current density of ~10 A/cm^2, yielding bandgap-voltage offsets of 0.20 and
0.21 V. We measured their broadband reflectance and used it to estimate
thermophotovoltaic efficiency. The InP-based cell is estimated to yield 1.09
W/cm^2 at 1100 degrees C vs. 0.92 W/cm^2 for the GaAs-based cell, with
efficiencies of 16.8 vs. 9.2%. The efficiencies of both devices are limited by
sub-bandgap absorption, with power weighted sub-bandgap reflectances of 81% and
58%, respectively, which we assess largely occurs in the graded buffers. We
estimate that the thermophotovoltaic efficiencies would peak at ~1100 degrees C
at 24.0% and 20.7% in structures with the graded buffer removed, if previously
demonstrated reflectance is achieved. These devices also have application to
laser power conversion in the 2.0-2.3 micron atmospheric window. We estimate
peak LPC efficiencies of 36.8% and 32.5% under 2.0 micron irradiances of 1.86
W/cm^2 and 2.81 W/cm^2, respectively.Comment: 14 pages, 6 figure
- …