5 research outputs found

    A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)

    Get PDF
    Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org webcite), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. Conclusions Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection).This work was supported in part by SNC Laboratoire ASL, Ruiter Seeds B.V., Enza Zaden B.V., Gautier Semences S.A., Nunhems B.V., Rijk Zwaan B.V., Sakata Seed Inc, Semillas Fito S. A., Seminis Vegetable Seeds Inc, Syngenta Seeds B. V., Takii and Company Ltd, Vilmorin & Cie S. A., and Zeraim Gedera Ltd (all of them as part of the support to the ICuGI); the grants AGL2009-12698-C02-02 from the Spanish "Ministerio de Ciencia e Innovacion" to AJM. NK lab was supported in part by Research Grant Award No. IS-4223-09C from BARD, the United States - Israel Binational Agricultural Research and Development Fund, and in part by Israel Science Foundation Grant No. 38606, De Ruiter Seeds, Enza Zaden, Keygene, Rijk Zwaan, Sakata Seed Corporation, Semillas Fito, Syngenta Seeds and Vilmorin Clause & Cie. AD was supported by a JAE-Doc contract from "Consejo Superior de Investigaciones Cientificas" (CSIC-Spain). MF was supported by a postdoctoral contract from CRAG. The research carried out at YX's laboratory was supported by Chinese funds (Grant No. 2008-Z42(3), 5100001, 2010AA101907).Díaz Bermúdez, A.; Fergany, M.; Formisano, G.; Ziarsolo, P.; Blanca Postigo, JM.; Fei, Z.; Staub, JE.... (2011). A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon. BMC Plant Biology. 11. https://doi.org/10.1186/1471-2229-11-111S1

    In vivo repair of viral transcripts following cleavage by a cis hairpin ribozyme

    No full text
    Includes bibliographical references (pages 59-70)The hairpin ribozyme is a catalytic RNA that can be engineered to cleave any RNA with the sequence 5' GUC 3'. Because of this capacity to cleave targeted RNA, the hairpin ribozyme has the potential to down-regulate any particular gene of interest either in vitro or in vivo. Previous work from our lab showed that a cis- cleaving hairpin cassette inserted into the cauliflower mosaic virus genome could temporarily attenuate viral symptoms in Brassica campestris rapa. However, viral symptoms did eventually appear, suggesting that the virus was either outcompeting the relatively slow ribozyme cleavage or was repairing its genome. Further studies revealed deletions in several ribozyme DNA sequences from later time periods postinoculation, possibly indicating in vivo viral deletion of ribozyme sequences. Because these deletions always appeared immediately 3' of the cleavage site, they might have occurred at the RNA level. Base substitutions also were found in 6 of 26 ribozyme sequences examined. Since CaMV uses reverse transcriptase to replicate, an enzyme noteworthy for its tendency to produce a relatively high frequency of sequence alterations (including base substitutions, deletions, and recombinations), these mutations may be the result of reverse transcription. We suggest the possibility that reverse transcriptase might have produced the ribozyme deletions by a novel mechanism of "jumping" from secondary RNA structure in the 3' fragment to the cleaved end of the 5' fragment.M.S. (Master of Science

    A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)

    No full text
    A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via markerassisted selection (MAS). - Results: Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genòmic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genòmic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. - Conclusions: Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection)
    corecore