9 research outputs found

    Chlorophyll-a variability during upwelling events in the south-eastern Baltic Sea and in the Curonian Lagoon from satellite observations

    No full text
    Based on the analysis of multispectral satellite data, this work demonstrates the influence of coastal upwelling on the variability of chlorophyll-a (Chl-a) concentration in the south-eastern Baltic (SEB) Sea and in the Curonian Lagoon. The analysis of sea surface temperature (SST) data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua/Terra satellites, together with Chl-a maps from Medium Resolution Imaging Spectrometer (MERIS) onboard Envisat, shows a significant decrease of up to 40–50% in Chl-a concentration in the upwelling zone. This results from the offshore Ekman transport of more productive surface waters, which are replaced by cold and less-productive waters from deeper layers. Due to an active interaction between the Baltic Sea and the Curonian Lagoon which are connected through the Klaipeda Strait, coastal upwelling in the SEB also influences the hydrobiological conditions of the adjacent lagoon. During upwelling inflows, SST drops by approximately 2–8 °C, while Chl-a concentration becomes 2–4 times lower than in pre-upwelling conditions. The joint analysis of remotely sensed Chl-a and SST data reveals that the upwelling-driven reduction in Chl-a concentration leads to the temporary improvement of water quality in terms of Chl-a in the coastal zone and in the hyper-eutrophic Curonian Lagoon. This study demonstrates the benefits of multi-spectral satellite data for upscaling coastal processes and monitoring the environmental status of the Baltic Sea and its largest estuarine lagoon

    Remote Sensing of Coastal Upwelling in the South-Eastern Baltic Sea: Statistical Properties and Implications for the Coastal Environment

    No full text
    A detailed study of wind-induced coastal upwelling (CU) in the south-eastern Baltic Sea is presented based on an analysis of multi-mission satellite data. Analysis of moderate resolution imaging spectroradiometer (MODIS) sea surface temperature (SST) maps acquired between April and September of 2000⁻2015 allowed for the identification of 69 CU events. The Ekman-based upwelling index (UI) was applied to evaluate the effectiveness of the satellite measurements for upwelling detection. It was found that satellite data enable the identification of 87% of UI-based upwelling events during May⁻August, hence, serving as an effective tool for CU detection in the Baltic Sea under relatively cloud-free summer conditions. It was also shown that upwelling-induced SST drops, and its spatial properties are larger than previously registered. During extreme upwelling events, an SST drop might reach 14 °C, covering a total area of nearly 16,000 km2. The evolution of an upwelling front during such intensive events is accompanied by the generation of transverse filaments extending up to 70 km offshore. An analysis of the satellite optical data shows a clear decline in the chlorophyll-a concentration in the coastal zone and in the shallow Curonian Lagoon, where it drops down by an order of magnitude. It was also shown that a cold upwelling front alters the stratification in the atmospheric boundary layer, leading to a sudden drop of air temperature and near-surface winds

    The Effect of Short-Term Upwelling Events on Fish Assemblages at the South-Eastern Coast of the Baltic Sea

    No full text
    Multiple stressors, such as overfishing, pollution, climate change, biological invasions etc., are affecting fish communities, and thus can have versatile effects on marine ecosystems and socio-economic activities as well. Understanding the changes in the fish community structure is ecologically and economically important, yet a very complex issue, requiring comprehensive analysis of multiple factors. The role of regional oceanographic variability, namely, coastal upwelling, is often neglected when it comes to the analysis of fish assemblages. In this perspective, we were aiming, for the first time in the Baltic Sea, to assess the upwelling influence on fish communities and fish community-based ecological indices used under Marine Strategy Framework Directive. The study covered a long-term period (2000–2019) for upwelling identified by satellite data analysis and fish gillnet surveys, performed in three distinct locations in the coastal waters of the SE Baltic Sea. Overall, our study revealed that temporal dynamics of fish abundance and community composition were associated with the presence of coastal upwelling. The study outcomes suggest that the fish community was more diverse and a higher number of some fish species was observed before upwelling. During upwelling, there was more evident dominance of 1–2 main marine fish species. Through the changes in fish abundance and species composition upwelling was also responsible for the changes in fish community structure-based indices for marine environment status, i.e., in the majority of the cases a decrease in Trophic, Piscivorous Fish, and Diversity indices were observed. Our study demonstrates that upwelling can affect both, the quantitative and qualitative characteristics of coastal fish communities, therefore, it is important to consider this when predicting shifts in the distribution of fish stocks or assessing environmental status indicators, especially under changing climate. We believe that our approach adds novel information to the study of coastal ecosystems of the Baltic Sea and is important for better management of socio-economic activities in the coastal zone

    Hot moments and hotspots of cyanobacteria hyperblooms in the Curonian Lagoon (SE Baltic Sea) revealed via remote sensing-based retrospective analysis

    No full text
    A temporally and spatially detailed historical (1985–2018) analysis of cyanobacteria blooms was performed in the Curonian Lagoon (Lithuania, Russia), the largest coastal lagoon in the Baltic Sea. Satellite data allowed the mapping of cyanobacteria surface accumulations, so-called “scums”, and of chlorophyll-a concentration. The 34-year time series shows a tendency towards later occurrence (October–November) of the cyanobacteria scum presence, whereas the period of its onset (June–July) remains relatively constant. The periods when scums are present, “hot moments”, have been consistently increasing in duration since 2008. The differences in the starting, ending and annual duration of cyanobacteria blooms have been significantly altered by hydro-meteorological conditions (river discharge, water temperature, and wind conditions) and their year-round patterns. The most important environmental factors that determined the temporal changes of the scum presence and area were the standing stock of cyanobacteria and the ambient wind conditions. The “hotspots”, the areas where the blooms most likely occur, were distributed in the south-southwestern and central parts of the lagoon. The least affected areas were the northern part, which is connected to the coastal waters of the Baltic Sea, and the Nemunas River delta region. The longstanding, well-established spatial patterns of cyanobacteria blooms were linked to hydrodynamic features, namely water renewal time and current patterns, and to potential nutrient sources that included muddy sediments and the locations of colonies of piscivorous birds. Our findings confirmed that the annual and seasonal variations of cyanobacteria blooms and their regulation are a complex issue due to interactions between multiple factors over spatially and temporally broad scales. Despite great progress in the prevention and control of eutrophication and cyanobacteria blooms, the lagoon is still considered to be in a poor ecological status. This work provides a new and missing understanding on the spatial and temporal extent of cyanobacteria blooms and the factors that govern them. Such an understanding can help in planning management strategies, forecasting the magnitude and severity of blooms under changing nutrient loads and potential climate scenarios
    corecore