15 research outputs found

    Magnetic Ordering in Ilmenites and Corundum-Ordered Structures

    Get PDF
    In the last few years, the multiferroic materials have represented a very important research topic on the design of new technological devices. A better description for this kind of materials involves two or more forms of ferroic orders coupled in a single crystalline structure. The great number of studies in this field is focused on candidates that present the coupling between a magnetic order and ferroelectricity. However, these material classes are a challenging topic on first-principles calculations due to the strong correlation that arose from the unpaired electrons. Furthermore, the partial filling of d or f orbitals reduces a high localization and a strong interaction causing failures on the electronic structure prediction. The investigation of multiferroic materials aims at their application on the development of devices such as actuators, magnetic readers, sensors and data storage. Multiferroic materials are also alternatives to the production of technological applications based on spintronic. Our proposal is to show our experience in DFT simulations for magnetic states applied in oxides of ilmenites and corundum-ordered structures. Theoretical results reported for our group until now showed a good agreement with experimental results for half-metallicity, reduced band-gap, and/or ferromagnetic ordering

    Quantum Chemistry Applied to Photocatalysis with TiO2

    Get PDF
    Heterogeneous catalysis is a topic very studied in science. Its application in technologies of energy conversion, water purification, chemical synthesis, car catalytic converter and so on is studied. Recently, the TiO2 material in anatase and rutile phases has been used extensively in photocatalytic systems; its band-gap is localized in visible and ultra-violet spectra, proportioning a good material for generation of chemical radicals. Nowadays, the density functional theory (DFT) is shown as a great tool to simulate all types of materials and the possibilities to simulate bulk and surfaces of materials importance in last few decades. Recently, quantum periodic calculations based on DFT methods have been widely used to simulate materials and the main functionals applied are PBE, PBE0 and B3LYP; they are important for doping and adsorption theoretical investigations and are present in various simulation programs, such as, Crystal, Wien, Vasp and others. This methodology has investigate the influence of dangling bonds, cationic and anionic doping, charge transfer, surface energy and more quantum properties. Quantum chemistry tools, in particular, DFT methods, are key points to develop high quality research and technology once theoretical calculations are important to guide and understand the molecular design in photocatalysis

    Ruthenium(II)-arene complexes with monodentate aminopyridine ligands: insights into redox stability, electronic structures and biological activity

    Get PDF
    Sherpa Romeo green journal. Permission to archive accepted author manuscript.The synthesis and spectroscopic characterization of four ruthenium(II) arene complexes with monodentate pyridine derivatives ([( 6–p-cymene)RuCl2L]: L = 2-aminopyridine, 2-methylaminopyridine, 2-benzylaminopyridine, and pyridine) are reported. Full characterization was undertaken using 1H and 13C NMR spectroscopy, vibrational and electronic spectroscopies and crystallography (2-methylaminopyridine derivative). UB3LYP//(6-31+G(d),SPK-DZCD) density functional theory calculations determined the molecular and electronic structures. Cyclic voltammetry determined a large electrochemical stability window (>2.2 V) extending well beyond the physiological E°. Interactions with CT-DNA and BSA, and activity against four cell lines (HeLa, B16F10, HEp-2 and Vero) were evaluated. The 2-methylaminopyridine shows weak cytotoxicity (IC50 = 346 molL-1) towards HeLa cells. All the complexes interact with DNA at relatively high concentrations as determined by UV-vis spectroscopic titration. Results of circular dichroism spectroscopy, ethidium bromide competition, fluorescence spectroscopy and DNA viscosity measurements identify electrostatic interactions between partly hydrolyzed cationic complexes and the phosphate backbone of DNA as the most likely interaction mode. Slower rates of hydrolysis may be the origin of lower cytotoxicity for 1 these complexesYe

    ATLANTIC-PRIMATES: a dataset of communities and occurrences of primates in the Atlantic Forests of South America

    Get PDF
    Primates play an important role in ecosystem functioning and offer critical insights into human evolution, biology, behavior, and emerging infectious diseases. There are 26 primate species in the Atlantic Forests of South America, 19 of them endemic. We compiled a dataset of 5,472 georeferenced locations of 26 native and 1 introduced primate species, as hybrids in the genera Callithrix and Alouatta. The dataset includes 700 primate communities, 8,121 single species occurrences and 714 estimates of primate population sizes, covering most natural forest types of the tropical and subtropical Atlantic Forest of Brazil, Paraguay and Argentina and some other biomes. On average, primate communities of the Atlantic Forest harbor 2 ± 1 species (range = 1–6). However, about 40% of primate communities contain only one species. Alouatta guariba (N = 2,188 records) and Sapajus nigritus (N = 1,127) were the species with the most records. Callicebus barbarabrownae (N = 35), Leontopithecus caissara (N = 38), and Sapajus libidinosus (N = 41) were the species with the least records. Recorded primate densities varied from 0.004 individuals/km 2 (Alouatta guariba at Fragmento do Bugre, Paraná, Brazil) to 400 individuals/km 2 (Alouatta caraya in Santiago, Rio Grande do Sul, Brazil). Our dataset reflects disparity between the numerous primate census conducted in the Atlantic Forest, in contrast to the scarcity of estimates of population sizes and densities. With these data, researchers can develop different macroecological and regional level studies, focusing on communities, populations, species co-occurrence and distribution patterns. Moreover, the data can also be used to assess the consequences of fragmentation, defaunation, and disease outbreaks on different ecological processes, such as trophic cascades, species invasion or extinction, and community dynamics. There are no copyright restrictions. Please cite this Data Paper when the data are used in publications. We also request that researchers and teachers inform us of how they are using the data. © 2018 by the The Authors. Ecology © 2018 The Ecological Society of Americ

    A diagnosis approach for semiconductor properties evaluation from ab initio calculations: Ag-based materials investigation

    No full text
    Ag-based semiconductors have been extensively employed as photocatalysts for several decades due to their excellent electronic properties, photochemical properties, and relatively low synthesis cost. In this work, the α-Ag2WO4, β-Ag2WO4, γ-Ag2WO4, α-AgVO3, β-AgVO3, α-Ag2MoO4, β-Ag2MoO4, Ag2CrO4, and Ag3PO4 materials were systematically investigated by DFT/B3LYP calculations. The structural features were described by cations coordination, cluster distortion degree, and structure formers and modifiers. In turn, the evaluation of electronic properties indicates band gap values in the range of 2.54 ​eV–4.32 ​eV. The calculated density of charge carriers shows that the holes are the predominant charge carrier for all evaluated semiconductors, except for α-Ag2MoO4. The effective masses of charge carriers were also computed, and good stability for generated electrons and holes are expected for α- and β-Ag2WO4, α-AgVO3, β-AgVO3, β-Ag2MoO4, Ag2CrO4, and Ag3PO4 materials. Finally, the valence and conduction band edge potentials point to the Ag-based semiconductors as promising candidates for photocatalytic and biocide activities

    Unraveling the relationship between exposed surfaces and the photocatalytic activity of Ag3PO4: an in-depth theoretical investigation

    No full text
    Over the years, the possibility of using solar radiation in photocatalysis or photodegradation processes hasattracted remarkable interest from scientists around the world. In such processes, due to its electronicproperties, Ag3PO4is one of the most important semiconductors. This work delves into thephotocatalytic activity, stability, and reactivity of Ag3PO4surfaces by comparing plane waves withprojector augmented wave and localized Gaussian basis set simulations, at the atomic level. The resultsindicate that the (110) surface, in agreement with previous experimental reports, displays the mostsuitable characteristics for photocatalytic activity due to its high reactivity,i.e.the presence of a largeamount of undercoordinated Ag cations and a high value work function. Beyond the innovative results,this work shows a good synergy between both kinds of DFT approaches

    ATLANTIC BIRD TRAITS: a data set of bird morphological traits from the Atlantic forests of South America

    Get PDF
    Scientists have long been trying to understand why the Neotropical region holds the highest diversity of birds on Earth. Recently, there has been increased interest in morphological variation between and within species, and in how climate, topography, and anthropogenic pressures may explain and affect phenotypic variation. Because morphological data are not always available for many species at the local or regional scale, we are limited in our understanding of intra- and interspecies spatial morphological variation. Here, we present the ATLANTIC BIRD TRAITS, a data set that includes measurements of up to 44 morphological traits in 67,197 bird records from 2,790 populations distributed throughout the Atlantic forests of South America. This data set comprises information, compiled over two centuries (1820–2018), for 711 bird species, which represent 80% of all known bird diversity in the Atlantic Forest. Among the most commonly reported traits are sex (n = 65,717), age (n = 63,852), body mass (n = 58,768), flight molt presence (n = 44,941), molt presence (n = 44,847), body molt presence (n = 44,606), tail length (n = 43,005), reproductive stage (n = 42,588), bill length (n = 37,409), body length (n = 28,394), right wing length (n = 21,950), tarsus length (n = 20,342), and wing length (n = 18,071). The most frequently recorded species are Chiroxiphia caudata (n = 1,837), Turdus albicollis (n = 1,658), Trichothraupis melanops (n = 1,468), Turdus leucomelas (n = 1,436), and Basileuterus culicivorus (n = 1,384). The species recorded in the greatest number of sampling localities are Basileuterus culicivorus (n = 243), Trichothraupis melanops (n = 242), Chiroxiphia caudata (n = 210), Platyrinchus mystaceus (n = 208), and Turdus rufiventris (n = 191). ATLANTIC BIRD TRAITS (ABT) is the most comprehensive data set on measurements of bird morphological traits found in a biodiversity hotspot; it provides data for basic and applied research at multiple scales, from individual to community, and from the local to the macroecological perspectives. No copyright or proprietary restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications or teaching and educational activities. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ
    corecore