22 research outputs found
Hypothalamic Endoplasmic Reticulum Stress Of Overtrained Mice After Recovery
knowing the relationship between endoplasmic reticulum (ER) stress and inflammation and based on the fact that downhill running-based overtraining (OT) model increases hypothalamus levels of some pro-inflammatory cytokines, we verified the effects of three OT protocols on the levels of BiP, pIRE-1 (Ser734), pPERK (Thr981), pelF2alpha (Ser52), ATF-6 and GRP-94 proteins in the mouse hypothalamus after two weeks of recovery. Methods: the mice were randomized into control (CT), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up) and overtrained by running without inclination (OTR) groups. After 2-week total recovery period (i.e., week 10), hypothalamus was removed and used for immunoblotting. Results: The OTR/down group exhibited high levels of BiP and ATF6. The other OT protocols showed higher levels of pPERK (Th981) and pelf-2alpha (Ser52) when compared with the CT group. Conclusion: The current results suggest that after a 2-week total recovery period, the overtrained groups increased partially their ER stress protein levels, but without hypothalamic inflammation, which characterizes a physiological condition related to an adaptation mechanism.2
Accelerated aging as vigor test for sunn hemp seeds
ABSTRACT: This study aimed to determine the most appropriate method to assess the sunn hemp ( Crotalaria juncea L.) seed vigor in the accelerated aging test. Five seed lots from harvest 2007/2008 were evaluated for germination, vigor and seedling emergence in the field. Accelerated aging test was performed at 41°C during 48, 72 and 96 hours, with and without sodium chloride saturated solution. Then, the promising procedure was also performed for 2008/2009 and 2009/2010 harvests. In the traditional accelerated aging test, the no-uniform water acquisition by the seeds adversely affected results. Accelerated aging test with sodium chloride saturated solution is the most appropriate method to evaluate the physiological potential of sunn hemp seeds, and the combination of 41°C and 96 hours is efficient for separating of seed lots in different vigor levels
Esterco líquido de bovinos leiteiros combinado com adubação mineral sobre atributos químicos de um Latossolo Bruno
Environmental variables and Piper assemblage composition: a mesoscale study in the Madeira-Purus interfluve, Central Amazonia
Serum and plasma hormonal concentrations are sensitive to periods of intensity and volume of soccer training
Objectifs Évaluer les effets d’un programme d’entraînement de 12 semaines sur les concentrations hormonales et la performance physiologique des joueurs de football. Sujets et méthodes Dix-huit sujets ont été évalués au commencement (T1), au milieu (T2) et à la fin (T3) de la saison. Leur sang a été recueilli pour l’analyse du cortisol, testostérone, rapport testostérone/cortisol, épinéphrine et norépinéphrine. Les paramètres anaérobie lactique/alactique et le seuil anaérobie ont été utilisés comme mesures de performance physiologique. Résultats Tandis que les niveaux de cortisol étaient plus élevés en T2 et T3 comparés à ceux de T1 (p ≤ 0,05), les valeurs de testostérone et les rapports testostérone/cortisol étaient significativement moins élevés en T2 et T3 comparés à ceux de T1 (p ≤ 0,05). Les concentrations de norépinéphrine ont augmenté de T1 à T2 et T3 (p ≤ 0,05). En plus, alors qu’il y a eu une baisse significative des paramètres de la performance anaérobie alactique en T2 et T3 comparés à ceux de T1 (p ≤ 0,05), le seuil anaérobie s’est élevé en T2 et T3 comparé à T1 (p ≤ 0,05). En résumé, nous avons constaté que les niveaux de NE peuvent être utilisés comme marqueurs des variations de volume et intensité d’entraînement. En plus, les altérations dans les niveaux d’hormones sélectionnés dans cette étude n’ont pas été associées à des réponses négatives des performances physiologiques.Mots clés Cortisol; Testostérone; Testostérone/cortisol rapport; Catécholamines; Football
Aerobic And Anaerobic Performances In Tethered Swimming
The purpose of this study was to investigate whether the critical force (CritF) and anaerobic impulse capacity (AIC) - estimated by tethered swimming - reflect the aerobic and anaerobic performance of swimmers. 12 swimmers performed incremental test in tethered swimming to determine lactate anaerobic threshold (AnTLAC), maximal oxygen uptake (̇VO2MAX) and force associated with the ̇VO2MAX (i ̇VO2MAX). The swimmers performed 4 exhaustive (tlim) exercise bouts (100, 110, 120 and 130% i ̇VO2MAX) to compute the CritF and AIC (F vs. 1/tlim model); a 30-s all-out tethered swimming bout to determine their anaerobic fitness (ANF); 100, 200, and 400-m time-trials to determine the swimming performance. CritF (57.09±11.77 N) did not differ from AnTLAC (53.96±11.52 N, (P>0.05) but was significantly lower than i ̇VO2MAX (71.02±8.36 N). In addition, CritF presented significant correlation with AnTLAC (r=0.76; P<0.05) and i ̇VO2MAX (r=0.74; P<0.05). On the other hand, AIC (286.19±54.91 N.s) and ANF (116.10±13.66 N) were significantly correlated (r=0.81, p<0.05). In addition, CritF and AIC presented significant correlations with all time-trials. In summary, this study demonstrates that CritF and AIC can be used to evaluate AnTLAC and ANF and to predict 100, 200, and 400-m free swimming. © Georg Thieme Verlag KG Stuttgart . New York.348712719Almeida, A.G., Cunha, F.A.P., Rosa, M.R.R., Kokubun, E., Critical force in tethered swimming: Relationship with blood lactate and oxygen uptake (2004) Rev Bras Ciên Esporte, 24, pp. 47-59Billat, V.L., Morton, R.H., Blondel, N., Berthoin, S., Bocquet, V., Koralsztein, J.P., Barstow, T.J., Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake (2000) European Journal of Applied Physiology, 82 (3), pp. 178-187Bishop, D., Jenkins, D.G., The influence of resistance training on the critical power function and time to fatigue at critical power (1996) Aust J Sci Med Sport, 28, pp. 101-110Bland, J.M., Altman, D.G., Statistical methods for assessing agreement between two methods of clinical measurement (1986) Lancet, 1 (8476), pp. 307-310. , PII S0140673686908378Blondel, N., Berthoin, S., Billat, V., Lensel, G., Relationship between run times to exhaustion at 90, 100, 120, and 140% of vVO2max and velocity expressed relatively to critical velocity and maximal velocity (2001) International Journal of Sports Medicine, 22 (1), pp. 27-33. , DOI 10.1055/s-2001-11357Bonen, A., Wilson, B.A., Yarkony, M., Belcastro, A.N., Maximal oxygen uptake during free, tethered, and flume swimming (1980) Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, 48 (2), pp. 232-235Bosquet, L., Delhors, P.R., Duchene, A., Dupont, G., Leger, L., Anaerobic running capacity determined from a 3-parameter systems model: Relationship with other anaerobic indices and with running performance in the 800 m-run (2007) International Journal of Sports Medicine, 28 (6), pp. 495-500. , DOI 10.1055/s-2006-924516Costill, D.L., Kovaleski, J., Porter, D., Energy expenditure during front crawl swimming: Predicting success in middle-distance events (1985) International Journal of Sports Medicine, 6 (5), pp. 266-270Dekerle, J., Brickley, G., Alberty, M., Pelayo, P., Characterising the slope of the distance-time relationship in swimming (2010) J Sci Med Sport, 13, pp. 365-370Dekerle, J., Brickley, G., Hammond, A.J.P., Pringle, J.S.M., Carter, H., Validity of the two-parameter model in estimating the anaerobic work capacity (2006) European Journal of Applied Physiology, 96 (3), pp. 257-264. , DOI 10.1007/s00421-005-0074-8Dekerle, J., Pelayo, P., Clipet, B., Depretz, S., Lefevre, T., Sidney, M., Critical swimming speed does not represent the speed at maximal lactate steady state (2005) International Journal of Sports Medicine, 26 (7), pp. 524-530. , DOI 10.1055/s-2004-821227Dekerle, J., Sidney, M., Hespel, J.M., Pelayo, P., Validity and reliability of critical speed, critical stroke rate, and anaerobic capacity in relation to front crawl swimming performances (2002) International Journal of Sports Medicine, 23 (2), pp. 93-98. , DOI 10.1055/s-2002-20125Di Prampero, P.E., Dekerle, J., Capelli, C., Zamparo, P., The critical velocity in swimming (2008) European Journal of Applied Physiology, 102 (2), pp. 165-171. , DOI 10.1007/s00421-007-0569-6Eckerson, J.M., Bull, A.A., Moore, G.A., Effect of thirty days of creatine supplementation with phosphate salts on anaerobic working capacity and body weight in men (2008) J Strength Cond Res, 22, pp. 826-832Ferguson, C., Whipp, B.J., Cathcart, A.J., Rossiter, H.B., Turner, A.P., Ward, S.A., Effects of prior very-heavy intensity exercise on indices of aerobic function and high-intensity exercise tolerance (2007) Journal of Applied Physiology, 103 (3), pp. 812-822. , http://jap.physiology.org/cgi/reprint/103/3/812, DOI 10.1152/japplphysiol.01410.2006Fernandes, R.J., Cardoso, C.S., Soares, S.M., Ascensao, A., Colaco, P.J., Vilas-Boas, J.P., Time Limit and VO2 Slow Component at Intensities Corresponding to VO2max in Swimmers (2003) International Journal of Sports Medicine, 24 (8), pp. 576-581. , DOI 10.1055/s-2003-43274Fernandes, R.J., Keskinen, K.L., Colaco, P., Querido, A.J., Machado, L.J., Morais, P.A., Novais, D.Q., Vilas Boas, J.P., Time limit at VO2max velocity in elite crawl swimmers (2008) International Journal of Sports Medicine, 29 (2), pp. 145-150. , DOI 10.1055/s-2007-965113Fukuba, Y., Miura, A., Endoi, M., Kan, A., Yanagawa, K., Whipp, B.J., The curvature constant parameter of the power-duration curve for varied-power exercise (2003) Medicine and Science in Sports and Exercise, 35 (8), pp. 1413-1418. , DOI 10.1249/01.MSS.0000079047.84364.70Green, S., Dawson, B.T., The Y-intercept of the maximal work-duration regression and field tests of anaerobic capacity in cyclists (1996) International Journal of Sports Medicine, 17 (1), pp. 41-47. , DOI 10.1055/s-2007-972806Harriss, D.J., Atkinson, G., Update - Ethical Standards in Sport and Exercise Science Research (2011) J Sports Med, 32, pp. 819-821Hill, D.W., Smith, J.C., A method to ensure the accuracy of estimates of anaerobic capacity derived using the critical power concept (1994) Journal of Sports Medicine and Physical Fitness, 34 (1), pp. 23-37Ikuta, Y., Wakayoshi, K., Nomura, T., Determination and validity of critical swimming force as performance index in tethered swimming (1996) Biomech Med Swimming, 7, pp. 146-151Jenkins, D.G., Quigley, B.M., The y-intercept of the critical power functions as a measure of anaerobic work capacity (1991) Ergonomics, 34, pp. 13-22Jones, A.M., Wilkerson, D.P., DiMenna, F., Fulford, J., Poole, D.C., Muscle metabolic responses to exercise above and below the "critical power" assessed using 31P-MRS (2008) American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 294 (2), pp. R585-R593. , http://ajpregu.physiology.org/cgi/reprint/294/2/R585, DOI 10.1152/ajpregu.00731.2007Jones, A.M., Vanhatal, A., Burnle, M., Morto, R.H., Poole, D.C., Critical Power: Implications for the determination of VO2 max and exercise tolerance (2010) Med Sci Sports Exerc, 42, pp. 1876-1890Kendall, K.L., Smith, A.E., Graef, J.L., Fukuda, D.H., Moon, J.R., Beck, T.W., Cramer, J.T., Stout, J.R., Effects of four weeks of high-intensity interval training and creatine supplementation on critical power and anaerobic working capacity in college-aged men (2009) J Strength Cond Res, 23, pp. 1663-1669Kuipers, H., Verstappen, F.T.J., Keizer, H.A., Variability of aerobic performance in the laboratory and its physiologic correlates (1985) International Journal of Sports Medicine, 6 (4), pp. 197-201Leclair, E., Borel, B., Thevenet, D., Baquet, G., Mucci, P., Berthoin, S., Assessment of child-specific aerobic fitness and anaerobic capacity by the use of the power-time relationships constants (2010) Pediatr Exerc Sci, 22, pp. 454-466Martin, R.B., Yeater, R.A., White, M.K., A simple analytical model for the crawl stroke (1981) Journal of Biomechanics, 14 (8), pp. 539-548. , DOI 10.1016/0021-9290(81)90003-8Matsumoto, I., Araki, H., Tsuda, K., Odajima, H., Nishima, S., Higaki, Y., Tanaka, H., Shindo, M., Effects of swimming training on aerobic capacity and exercise induced bronchoconstriction in children with bronchial asthma (1999) Thorax, 54 (3), pp. 196-201Miura, A., Endo, M., Sato, H., Sato, H., Barstow, T.J., Fukuba, Y., Relationship between the curvature constant parameter of the power-duration curve and muscle cross-sectional area of the thigh for cycle ergometry in humans (2002) European Journal of Applied Physiology, 87 (3), pp. 238-244. , DOI 10.1007/s00421-002-0623-3Monod, H., Scherrer, J., The work capacity of a synergic muscular group (1965) Ergonomics, 8, pp. 329-337Morouço, P., Keskinen, K.L., Vilas-Boas, J.P., Fernandes, R.J., Relationship between tethered forces and the four swimming techniques performance (2011) J Appl Biomech, 27, pp. 161-169Morton, R.H., The critical power and related whole-body bioenergetic models (2006) Eur J Appl Physiol, 96, pp. 339-354Papoti, M., Balikian, J.P., Denadai, B.S., Lima, M.C.S., Silva, A.S.R., Santhiago, V., Gobatto, C.A., Adaptation of the VO2000 gas analiser's mask to mensuration of cardiorespiratory parameters in swimming (2007) Rev Bras Med Esporte, 13, pp. 190-194Papoti, M., Martins, L.E.B., Cunha, S.A., Zagatto, A.M., Gobatto, C.A., Effects of taper on swimming force and Swimmer performance after an experimental ten-week training program (2007) Strength Cond Res, 21, pp. 538-542Papoti, M., Zagatto, A.M., Barbosa De Freitas Jr., P., Cunha, S.A., Barreto Martins, L.E., Gobatto, C.A., Use of the y-intercept in the evaluation of the anaerobic fitness and performance prediction of trained swimmers (2005) Revista Brasileira de Medicina do Esporte, 11 (2), pp. 126-130Perandini, L.A.B., Okuno, N.M., Kokubun, E., Nakamura, F.Y., Correlation between critical force and critical velocity and their respective stroke rates (2007) Rev Bras Cineantropom Desempenho Hum, 8, pp. 59-65Raglin, J.S., Koceja, D.M., Stager, J.M., Harms, C.A., Mood, neuromuscular function, and performance during training in female swimmers (1996) Medicine and Science in Sports and Exercise, 28 (3), pp. 372-377. , DOI 10.1097/00005768-199603000-00013Soares, S., Vilar, S., Bernardo, C., Campos, A., Fernandes, R., Vilas-Boas, J.P., Using data from the critical velocity regression line for the estimation of anaerobic capacity in infant and adult swimmers (2003) Portuguese J Sport Sci, 3, pp. 108-110Takahashi, S., Wakayoshi, K., Hayashi, A., Sakaguchi, Y., Kitagawa, K., A method for determining critical swimming velocity (2009) Int J Sports Med, 30, pp. 119-123Taylor, S.A., Batterham, A.M., The reproducibility of estimates of critical power and anaerobic work capacity in upper-body exercise (2002) European Journal of Applied Physiology, 87 (1), pp. 43-49. , DOI 10.1007/s00421-002-0586-4Toussaint, H.M., Wakayoshi, K., Hollander, A.P., Ogita, F., Simulated front crawl swimming performance related to critical speed and critical power (1998) Medicine and Science in Sports and Exercise, 30 (1), pp. 144-151. , DOI 10.1097/00005768-199801000-00020West, S.A., Drummond, M.J., VanNess, J.M., Ciccolella, M.E., Blood lactate and metabolic responses to controlled frequency breathing during graded swimming (2005) Journal of Strength and Conditioning Research, 19 (4), pp. 772-776. , DOI 10.1519/R-14543.1Williams, C.A., Dekerle, J., McGawley, K., Berthoin, S., Carter, H., Critical power in adolescent boys and girls - An exploratory study (2008) Appl Physiol Nutr Metab, 33, pp. 1105-1111Yeater, R.A., Martin, R.B., White, M.K., Gilson, K.H., Tethered swimming forces in the crawl breast and back strokes and their relationship to competitive performance (1981) Journal of Biomechanics, 14 (8), pp. 527-537. , DOI 10.1016/0021-9290(81)90002-
