32 research outputs found

    Development and characterization of CD22-targeted pegylated-liposomal doxorubicin (IL-PLD)

    Get PDF
    Non-Hodgkin’s lymphoma (NHL) is the sixth most common cause of cancer deaths in the U.S. Most NHLs initially respond well to chemotherapy, but relapse is common and treatment is often limited due to the toxicity of chemotherapeutic agents. Pegylated-liposomal doxorubicin (PLD, Ben Venue Laboratories, Inc), a produces less myelotoxicity than non-liposomal (NL) doxorubicin. To further enhance efficacy and NHL targeting and to decrease toxicity, we conjugated an anti-CD22 monoclonal antibody (HB22.7) to the surface of PLD, thereby creating CD22-targeted immunoliposomal PLD (IL-PLD). HB22.7 was successfully conjugated to PLD and the resulting IL-PLD exhibits specific binding to CD22-expressing cells as assessed by immunofluorescence staining. IL-PLD exhibits more cytotoxicity than PLD in CD22 positive cell lines but does not increase killing of CD22 negative cells. The IC50 of IL-PLD is 3.1 to 5.4 times lower than that of PLD in CD22+ cell lines while the IC50 of IL-PLD is equal to that of PLD in CD22- cells. Furthermore, IL-PLD remained bound to the CD22+ cells after washing and continued to exert cytotoxic effects, while PLD and NL- doxorubicin could easily be washed from these cells

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Treatment of invasive fungal infections in cancer patients—Recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO)

    Full text link

    The Design and Optimization of Dividing Wall Distillation Columns

    No full text

    Efficient elimination of chronic lymphocytic leukaemia B cells by autologous T cells with a bispecific anti-CD19/anti-CD3 single-chain antibody construct

    No full text
    Recently, we have shown that a novel recombinant bispecific single-chain antibody construct (bscCD19 x CD3), induces highly efficacious lymphoma-directed cytotoxicity mediated by unstimulated peripheral T lymphocytes. Functional analysis of bscCD19 x CD3 has so far been exclusively performed with human B lymphoma cell lines and T cells from healthy donors. Here we analysed the properties of bscCD19 x CD3 using primary B cells and autologous T cells from healthy volunteers or patients with B-cell chronic lymphocytic leukaemia (B-CLL). We show that bscCD19 x CD3 induces T-cell-mediated depletion of nonmalignant B cells in all four cases and depletion of primary lymphoma cells in 22 out of 25 cases. This effect could be observed at low effector-to-target (E:T) ratios and in the majority of cases without additional activation of autologous T cells by IL-2. Even in samples derived from patients heavily pretreated with different chemotherapy regimens, strong cytotoxic effects of bscCD19 x CD3 could be observed. The addition of bscCD19 x CD3 to patients' cells resulted in an upregulation of activation-specific cell surface antigens on autologous T cells and elevated levels of CD95 on lymphoma B cells. Although anti-CD95 antibody CH-11 failed to induce apoptosis in lymphoma cells, we provide evidence that B-CLL cell depletion by bscCD x CD3 is mediated at least in part by apoptosis via the caspase pathway
    corecore