67 research outputs found

    Plasma antioxidant status, immunoglobulin G oxidation and lipid peroxidation in demented patients:Relevance to Alzheimer disease and vascular dementia

    Get PDF
    A large body of evidence supports a role of oxidative stress in Alzheimer disease (AD) and in cerebrovascular disease. A vascular component might be critical in the pathophysiology of AD, but there is a substantial lack of data regarding the simultaneous behavior of peripheral antioxidants and biomarkers of oxidative stress in AD and vascular dementia (VaD). Sixty-three AD patients, 23 VaD patients and 55 controls were included in the study. We measured plasma levels of water-soluble (vitamin C and uric acid) and lipophilic (vitamin E, vitamin A, carotenoids including lutein, zeaxanthin, β-cryptoxanthin, lycopene, α- and β-carotene) antioxidant micronutrients as well as levels of biomarkers of lipid peroxidation [malondialdehyde (MDA)] and of protein oxidation [immunoglobulin G (IgG) levels of protein carbonyls and dityrosine] in patients and controls. With the exception of β-carotene, all antioxidants were lower in demented patients as compared to controls. Furthermore, AD patients showed a significantly higher IgG dityrosine content as compared to controls. AD and VaD patients showed similar plasma levels of plasma antioxidants and MDA as well as a similar IgG content of protein carbonyls and dityrosine. We conclude that, independent of its nature - vascular or degenerative - dementia is associated with the depletion of a large spectrum of antioxidant micronutrients and with increased protein oxidative modification. This might be relevant to the pathophysiology of dementing disorders, particularly in light of the recently suggested importance of the vascular component in AD development. Copyright © 2004 S. Karger AG, Basel

    Human Umbilical Cord Blood Treatment in a Mouse Model of ALS: Optimization of Cell Dose

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a multicausal disease characterized by motor neuron degeneration in the spinal cord and brain. Cell therapy may be a promising new treatment for this devastating disorder. We recently showed that a single low dose (10(6) cells) of mononuclear human umbilical cord blood (MNC hUCB) cells administered intravenously to G93A mice delayed symptom progression and modestly prolonged lifespan. The aim of this pre-clinical translation study is to optimize the dose of MNC hUCB cells to retard disease progression in G93A mice. Three different doses of MNC hUCB cells, 10x10(6), 25x10(6) and 50x10(6), were administered intravenously into pre-symptomatic G93A mice. Motor function tests and various assays to determine cell effects were performed on these mice.Our results showed that a cell dose of 25x10(6) cells significantly increased lifespan of mice by 20-25% and delayed disease progression by 15%. The most beneficial effect on decreasing pro-inflammatory cytokines in the brain and spinal cord was found in this group of mice. Human Th2 cytokines were found in plasma of mice receiving 25x10(6) cells, although prevalent human Th1 cytokines were indicated in mice with 50x10(6) cells. High response of splenic cells to mitogen (PHA) was indicated in mice receiving 25x10(6) (mainly) and 10x10(6) cells. Significantly increased lymphocytes and decreased neutrophils in the peripheral blood were found only in animals receiving 25x10(6) cells. Stable reduction in microglia density in both cervical and lumbar spinal cords was also noted in mice administered with 25x10(6) cells.These results demonstrate that treatment for ALS with an appropriate dose of MNC hUCB cells may provide a neuroprotective effect for motor neurons through active involvement of these cells in modulating the host immune inflammatory system response

    Human Fatal Zaire Ebola Virus Infection Is Associated with an Aberrant Innate Immunity and with Massive Lymphocyte Apoptosis

    Get PDF
    Ebolavirus, especially the species Zaïre (ZEBOV), causes a fulminating hemorrhagic fever syndrome resulting in the death of most patients within a few days. In vitro studies and animal models have brought some insight as to the immune responses to ZEBOV infection. However, human immune responses have as yet been poorly investigated, mainly due to the fact that most outbreaks occur in remote areas of central Africa. Published studies, based on small numbers of biological samples have given conflicting results. We studied a unique collection of 50 blood samples obtained during five outbreaks that occurred between 1996 and 2003 in Gabon and Republic of Congo. We measured the plasma levels of 50 soluble factors known to be involved in immune responses to viral diseases. For the first time, using a cell staining technique, we analyzed circulating lymphocytes from ZEBOV-infected patients. We found that fatal outcome in humans is associated with aberrant innate immunity characterized by a “cytokine storm,” with hypersecretion of numerous proinflammatory mediators and by the noteworthy absence of antiviral interferon. The adaptive response is globally suppressed, showing a massive loss of CD4 and CD8 lymphocytes and the immune mediators they produce. These findings may have important pathological and therapeutic implications

    Evidence of Compromised Blood-Spinal Cord Barrier in Early and Late Symptomatic SOD1 Mice Modeling ALS

    Get PDF
    Background: The blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), and blood-cerebrospinal fluid barrier (BCSFB) control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease. Methodology/Principal Findings: Evans Blue (EB) dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage. Conclusions/Significance: Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease

    Preclinical Organotypic Models for the Assessment of Novel Cancer Therapeutics and Treatment

    Get PDF

    Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer

    Get PDF
    Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis which drives endothelial cell survival, proliferation, and migration while increasing vascular permeability. Playing an important role in the physiology of normal ovaries, VEGF has also been implicated in the pathogenesis of ovarian cancer. Essentially by promoting tumor angiogenesis and enhancing vascular permeability, VEGF contributes to the development of peritoneal carcinomatosis associated with malignant ascites formation, the characteristic feature of advanced ovarian cancer at diagnosis. In both experimental and clinical studies, VEGF levels have been inversely correlated with survival. Moreover, VEGF inhibition has been shown to inhibit tumor growth and ascites production and to suppress tumor invasion and metastasis. These findings have laid the basis for the clinical evaluation of agents targeting VEGF signaling pathway in patients with ovarian cancer. In this review, we will focus on VEGF involvement in the pathophysiology of ovarian cancer and its contribution to the disease progression and dissemination

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity

    Get PDF
    Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity
    corecore