970 research outputs found

    Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: A computational study

    Get PDF
    Background Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is not well understood. Methods We simulated a 150 × 150 mm 2D sheet of cardiac ventricular tissue using a simplified computational model. We investigated wavebreak and re-entry initiated by an S1S2S3 stimulus protocol in tissue sheets with two regions, each with different APD restitution. The two regions had a different APD at short diastolic interval (DI), but similar APD at long DI. Simulations were performed twice; once with both regions having steep (slope > 1), and once with both regions having flat (slope < 1) APD restitution. Results Wavebreak and re-entry were readily initiated using the S1S2S3 protocol in tissue sheets with two regions having different APD restitution properties. Initiation occurred irrespective of whether the APD restitution slopes were steep or flat. With steep APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms with S1S2 of 250 ms, to 75 ms (S1S2 180 ms). With flat APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms (S1S2 250 ms), to 21 ms (S1S2 340 ms) and then 11 ms (S1S2 400 ms). Conclusion Regional differences in APD restitution are an arrhythmogenic substrate that can be concealed at normal heart rates. A premature stimulus produces regional differences in repolarisation, and a further premature stimulus can then result in wavebreak and initiate re-entry. This mechanism for initiating re-entry is independent of the steepness of the APD restitution curve

    Felling of individual freestanding nanoobjects using focused-ion-beam milling for investigations of structural and transport properties

    Get PDF
    We report that, to enable studies of their compositional, structural and electrical properties, freestanding individual nanoobjects can be selectively felled in a controllable way by the technique of low-current focused-ion-beam (FIB) milling with the ion beam at a chosen angle of incidence to the nanoobject. To demonstrate the suitability of the technique, we report results zigzag/straight tungsten nanowires grown vertically on support substrates and then felled for characterization. We also describe a systematic investigation of the effect of the experimental geometry and parameters on the felling process and on the induced wire-bending phenomenon. The method of felling freestanding nanoobjects using FIB is an advantageous new technique for enabling investigations of the properties of selected individual nanoobjects

    Vision Impairs the Abilities of Bats to Avoid Colliding with Stationary Obstacles

    Get PDF
    Background: Free-flying insectivorous bats occasionally collide with stationary objects they should easily detect by echolocation and avoid. Collisions often occur with lighted objects, suggesting ambient light may deleteriously affect obstacle avoidance capabilities. We tested the hypothesis that free-flying bats may orient by vision when they collide with some obstacles. We additionally tested whether acoustic distractions, such as ‘‘distress calls’ ’ of other bats, contributed to probabilities of collision. Methodology/Principal Findings: To investigate the role of visual cues in the collisions of free-flying little brown bats (Myotis lucifugus) with stationary objects, we set up obstacles in an area of high bat traffic during swarming. We used combinations of light intensities and visually dissimilar obstacles to verify that bats orient by vision. In early August, bats collided more often in the light than the dark, and probabilities of collision varied with the visibility of obstacles. However, the probabilities of collisions altered in mid to late August, coincident with the start of behavioural, hormonal, and physiological changes occurring during swarming and mating. Distress calls did not distract bats and increase the incidence of collisions. Conclusions/Significance: Our findings indicate that visual cues are more important for free-flying bats than previously recognized, suggesting integration of multi-sensory modalities during orientation. Furthermore, our study highlight

    Positive Interactions between Desert Granivores: Localized Facilitation of Harvester Ants by Kangaroo Rats

    Get PDF
    Facilitation, when one species enhances the environment or performance of another species, can be highly localized in space. While facilitation in plant communities has been intensely studied, the role of facilitation in shaping animal communities is less well understood. In the Chihuahuan Desert, both kangaroo rats and harvester ants depend on the abundant seeds of annual plants. Kangaroo rats, however, are hypothesized to facilitate harvester ants through soil disturbance and selective seed predation rather than competing with them. I used a spatially explicit approach to examine whether a positive or negative interaction exists between banner-tailed kangaroo rat (Dipodomys spectabilis) mounds and rough harvester ant (Pogonomyrmex rugosus) colonies. The presence of a scale-dependent interaction between mounds and colonies was tested by comparing fitted spatial point process models with and without interspecific effects. Also, the effect of proximity to a mound on colony mortality and spatial patterns of surviving colonies was examined. The spatial pattern of kangaroo rat mounds and harvester ant colonies was consistent with a positive interspecific interaction at small scales (<10 m). Mortality risk of vulnerable, recently founded harvester ant colonies was lower when located close to a kangaroo rat mound and proximity to a mound partly predicted the spatial pattern of surviving colonies. My findings support localized facilitation of harvester ants by kangaroo rats, likely mediated through ecosystem engineering and foraging effects on plant cover and composition. The scale-dependent effect of kangaroo rats on abiotic and biotic factors appears to result in greater founding and survivorship of young colonies near mounds. These results suggest that soil disturbance and foraging by rodents can have subtle impacts on the distribution and demography of other species

    The Winter Worries of Bats : Past and Present Perspectives on Winter Habitat and Management of Cave Hibernating Bats

    Get PDF
    Winter is a time of fascinating changes in biology for cave-hibernating bats, but it is also a time of vulnerability. Unsurprisingly, assessments of winter habitat for these mammals and how it can be managed have been a focus of many researchers involved with the North American Society for Bat Research over the last 50 years. Over this time, a paradigm shift has occurred in the way scientists think about factors driving selection of winter habitat, especially temperature. To illustrate this change, we review three hypotheses seeking to explain microclimate selection in cavernicolous bats. The first, which we call the “Colder is Better Hypothesis,” posits that bats should select cold microclimates that minimize energy expenditure. The “Hibernation Optimization Hypothesis” suggests that bats should select microclimates that reduce expression of torpor to balance energy conservation against non-energetic costs of hibernation. Finally, the “Thrifty Female Hypothesis” asserts that females should select colder microclimates than males to conserve energy for reproduction. We discuss these hypotheses and the shift from viewing hibernation as a phenomenon driven solely by the need to conserve energy in the context of hibernacula management in North America. We focus on both historical and recent conservation threats, most notably alteration of thermal regimes and the disease white-nose syndrome. We urge against returning to an over-simplified view of winter habitat selection in response to our current conservation challenges.Peer reviewe

    Sexual Segregation and Flexible Mating Patterns in Temperate Bats

    Get PDF
    Social structure evolves from a trade-off between the costs and benefits of group-living, which are in turn dependent upon the distribution of key resources such as food and shelter. Males and females, or juveniles and adults, may have different priorities when selecting habitat due to differences in physiological or behavioural imperatives, leading to complex patterns in group composition. We studied social structure and mating behaviour in the insectivorous bat Myotis daubentonii along an altitudinal gradient, combining field studies with molecular genetics. With increasing altitude the proportion of males in summer roosts increased and only males were present in the highest roosts. With increasing altitude environmental temperature decreased, nightly variation in temperature increased, and bat foraging activity decreased, supporting the hypothesis that the harsher, high elevation sites cannot support breeding females. We found that offspring in female-dominated lowland roosts had a very high probability of being fathered by bats caught during autumn swarming at hibernation sites, in contrast to those in intermediate roosts, which had a high probability of being fathered by males sharing the nursery roost with the females. Whilst females normally appear to exclude males from nursery colonies, for those in marginal habitats, one explanation for the presence of males is that the thermoregulatory benefits to the females may outweigh disadvantages, such as competition for food, and give some males an opportunity to increase their breeding success. We suggest that the environment, and its effects on resource distribution, thus determine social structure, which in turn determines the mating pattern that has evolved

    Factors associated with preservation of facial nerve function after surgical resection of vestibular schwannoma

    Get PDF
    Avoidance of facial nerve palsy is one of the major goals of vestibular schwannoma (VS) microsurgery. In this study, we examined the significance of previously implicated prognostic factors (age, tumor size, the extent of resection and the surgical approach) on post-operative facial nerve function. We selected all VS patients from prospectively collected database (1984–2009) who underwent microsurgical resection as their initial treatment for histopathologically confirmed VS. The effect of variables such as surgical approach, tumor size, patient age and extent of resection on rates facial nerve dysfunction after surgery, were analyzed using multivariate logistic regression. Patients with preoperative facial nerve dysfunction (House-Brackman [HB] score 3 or higher) were excluded, and HB grade of 1 or 2 at the last follow-up visit was defined as “facial nerve preservation.” A total of 624 VS patients were included in this study. Multivariate logistic regression analysis found that only pre-operative tumor size significantly predicted poorer facial nerve outcome for patients followed-up for ≥6 and ≥12 months (OR 1.27, 95% CI 1.09–1.49, p < 0.01; OR 1.35, 95% CI 1.10–1.67, P < 0.01, respectively). We found no significant relationship between facial nerve function and age, extent of resection, surgical approach, or tumor size (when extent of resection and surgical approach were included in the regression analysis). Because facial nerve palsy is a debilitating and psychologically devastating condition for the patient, we suggest altering surgical aggressiveness in patients with unfavorable tumor anatomy, particularly in cases with large tumors where overaggressive resection might subject the patient to unwarranted risk. Residual disease can be followed and controlled with radiosurgery if interval growth is noted

    Clutch Frequency Affects the Offspring Size-Number Trade-Off in Lizards

    Get PDF
    Background: Studies of lizards have shown that offspring size cannot be altered by manipulating clutch size in species with a high clutch frequency. This raises a question of whether clutch frequency has a key role in influencing the offspring sizenumber trade-off in lizards. Methodology/Principal Findings: To test the hypothesis that females reproducing more frequently are less likely to tradeoff offspring size against offspring number, we applied the follicle ablation technique to female Eremias argus (Lacertidae) from Handan (HD) and Gonghe (GH), the two populations that differ in clutch frequency. Follicle ablation resulted in enlargement of egg size in GH females, but not in HD females. GH females switched from producing a larger number of smaller eggs in the first clutch to a smaller number of larger eggs in the second clutch; HD females showed a similar pattern of seasonal shifts in egg size, but kept clutch size constant between the first two clutches. Thus, the egg sizenumber trade-off was evident in GH females, but not in HD females. Conclusions/Significance: As HD females (mean = 3.1 clutches per year) reproduce more frequently than do GH females (mean = 1.6 clutches per year), our data therefore validate the hypothesis tested. Our data also provide an inference that maximization of maternal fitness could be achieved in females by diverting a large enough, rather than a higher-than-usual

    Integrated climate-chemical indicators of diffuse pollution from land to water

    Get PDF
    Management of agricultural diffuse pollution to water remains a challenge and is influenced by the complex interactions of rainfall-runoff pathways, soil and nutrient management, agricultural landscape heterogeneity and biogeochemical cycling in receiving water bodies. Amplified cycles of weather can also influence nutrient loss to water although they are less considered in policy reviews. Here, we present the development of climate-chemical indicators of diffuse pollution in highly monitored catchments in Western Europe. Specifically, we investigated the influences and relationships between weather processes amplified by the North Atlantic Oscillation during a sharp upward trend (20102016) and the patterns of diffuse nitrate and phosphorus pollution in rivers. On an annual scale, we found correlations between local catchment-scale nutrient concentrations in rivers and the influence of larger, oceanic-scale climate patterns defined by the intensity of the North Atlantic Oscillation. These influences were catchment-specific showing positive, negative or no correlation according to a typology. Upward trends in these decadal oscillations may override positive benefits of local management in some years or indicate greater benefits in other years. Developing integrated climate-chemical indicators into catchment monitoring indicators will provide a new and important contribution to water quality management objectives
    corecore