302 research outputs found
A General Black String and its Microscopics
Using G2(2) dualities we construct the most general black string solution of
minimal five-dimensional ungauged supergravity. The black string has five
independent parameters, namely, the magnetic one-brane charge, smeared electric
zero-brane charge, boost along the string direction, energy above the BPS
bound, and rotation in the transverse space. In one extremal limit it reduces
to the three parameter supersymmetric string of five-dimensional minimal
supergravity; in another extremal limit it reduces to the three parameter
non-supersymmetric extremal string of five-dimensional minimal supergravity. It
also admits an extremal limit when it has maximal rotation in the
four-dimensional transverse space. The decoupling limit of our general black
string is a BTZ black hole times a two sphere. The macroscopic entropy of the
string is reproduced by the Maldacena-Strominger-Witten CFT in appropriate
ranges of the parameters. When the pressureless condition is imposed, our
string describes the infinite radius limit of the most general class of black
rings of minimal supergravity. We discuss implications our solution has for
extremal and non-extremal black rings of minimal supergravity.Comment: 35 pages; 3 figures; v2 section 4.1.1 rewritten + minor changes + ref
adde
Conformal Symmetry of a Black Hole as a Scaling Limit: A Black Hole in an Asymptotically Conical Box
We show that the previously obtained subtracted geometry of four-dimensional
asymptotically flat multi-charged rotating black holes, whose massless wave
equation exhibit symmetry may be
obtained by a suitable scaling limit of certain asymptotically flat
multi-charged rotating black holes, which is reminiscent of near-extreme black
holes in the dilute gas approximation. The co-homogeneity-two geometry is
supported by a dilation field and two (electric) gauge-field strengths. We also
point out that these subtracted geometries can be obtained as a particular
Harrison transformation of the original black holes. Furthermore the subtracted
metrics are asymptotically conical (AC), like global monopoles, thus describing
"a black hole in an AC box". Finally we account for the the emergence of the
symmetry as a consequence of the
subtracted metrics being Kaluza-Klein type quotients of .
We demonstrate that similar properties hold for five-dimensional black holes.Comment: Sections 3 and 4 significantly augmente
Holographic c-theorems in arbitrary dimensions
We re-examine holographic versions of the c-theorem and entanglement entropy
in the context of higher curvature gravity and the AdS/CFT correspondence. We
select the gravity theories by tuning the gravitational couplings to eliminate
non-unitary operators in the boundary theory and demonstrate that all of these
theories obey a holographic c-theorem. In cases where the dual CFT is
even-dimensional, we show that the quantity that flows is the central charge
associated with the A-type trace anomaly. Here, unlike in conventional
holographic constructions with Einstein gravity, we are able to distinguish
this quantity from other central charges or the leading coefficient in the
entropy density of a thermal bath. In general, we are also able to identify
this quantity with the coefficient of a universal contribution to the
entanglement entropy in a particular construction. Our results suggest that
these coefficients appearing in entanglement entropy play the role of central
charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of
odd-dimensional field theories, which extends Cardy's proposal for even
dimensions. Beyond holography, we were able to show that for any
even-dimensional CFT, the universal coefficient appearing the entanglement
entropy which we calculate is precisely the A-type central charge.Comment: 62 pages, 4 figures, few typo's correcte
Positivity, entanglement entropy, and minimal surfaces
The path integral representation for the Renyi entanglement entropies of
integer index n implies these information measures define operator correlation
functions in QFT. We analyze whether the limit , corresponding
to the entanglement entropy, can also be represented in terms of a path
integral with insertions on the region's boundary, at first order in .
This conjecture has been used in the literature in several occasions, and
specially in an attempt to prove the Ryu-Takayanagi holographic entanglement
entropy formula. We show it leads to conditional positivity of the entropy
correlation matrices, which is equivalent to an infinite series of polynomial
inequalities for the entropies in QFT or the areas of minimal surfaces
representing the entanglement entropy in the AdS-CFT context. We check these
inequalities in several examples. No counterexample is found in the few known
exact results for the entanglement entropy in QFT. The inequalities are also
remarkable satisfied for several classes of minimal surfaces but we find
counterexamples corresponding to more complicated geometries. We develop some
analytic tools to test the inequalities, and as a byproduct, we show that
positivity for the correlation functions is a local property when supplemented
with analyticity. We also review general aspects of positivity for large N
theories and Wilson loops in AdS-CFT.Comment: 36 pages, 10 figures. Changes in presentation and discussion of
Wilson loops. Conclusions regarding entanglement entropy unchange
Stationary Black Holes: Uniqueness and Beyond
The spectrum of known black-hole solutions to the stationary Einstein
equations has been steadily increasing, sometimes in unexpected ways. In
particular, it has turned out that not all black-hole-equilibrium
configurations are characterized by their mass, angular momentum and global
charges. Moreover, the high degree of symmetry displayed by vacuum and
electro-vacuum black-hole spacetimes ceases to exist in self-gravitating
non-linear field theories. This text aims to review some developments in the
subject and to discuss them in light of the uniqueness theorem for the
Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998.
Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's
authorship. Significantly restructured and updated all sections; changes are
too numerous to be usefully described here. The number of references
increased from 186 to 32
STK295900, a Dual Inhibitor of Topoisomerase 1 and 2, Induces G<inf>2</inf> Arrest in the Absence of DNA Damage
STK295900, a small synthetic molecule belonging to a class of symmetric bibenzimidazoles, exhibits antiproliferative activity against various human cancer cell lines from different origins. Examining the effect of STK295900 in HeLa cells indicates that it induces G2 phase arrest without invoking DNA damage. Further analysis shows that STK295900 inhibits DNA relaxation that is mediated by topoisomerase 1 (Top 1) and topoisomerase 2 (Top 2) in vitro. In addition, STK295900 also exhibits protective effect against DNA damage induced by camptothecin. However, STK295900 does not affect etoposide-induced DNA damage. Moreover, STK295900 preferentially exerts cytotoxic effect on cancer cell lines while camptothecin, etoposide, and Hoechst 33342 affected both cancer and normal cells. Therefore, STK295900 has a potential to be developed as an anticancer chemotherapeutic agent. © 2013 Kim et al
The Worldvolume Action of Kink Solitons in AdS Spacetime
A formalism is presented for computing the higher-order corrections to the
worldvolume action of co-dimension one solitons. By modifying its potential, an
explicit "kink" solution of a real scalar field in AdS spacetime is found. The
formalism is then applied to explicitly compute the kink worldvolume action to
quadratic order in two expansion parameters--associated with the hypersurface
fluctuation length and the radius of AdS spacetime respectively. Two
alternative methods are given for doing this. The results are expressed in
terms of the trace of the extrinsic curvature and the intrinsic scalar
curvature. In addition to conformal Galileon interactions, we find a
non-Galileon term which is never sub-dominant. This method can be extended to
any conformally flat bulk spacetime.Comment: 32 pages, 3 figures, typos corrected and additional comments adde
Reliability of sickness certificates in detecting potential sick leave reduction by modifying working conditions: a clinical epidemiology study
BACKGROUND: Medical sickness certificates are generally the main source for information when scrutinizing the need for aimed intervention strategies to avoid or reduce the individual and community side effects of sick leave. This study explored the value of medical sickness certificates related to daily work in Norwegian National Insurance Offices to identify sick-listed persons, where modified working conditions might reduce the ongoing sick leave. METHODS: The potential for reducing the ongoing sick leave by modifying working conditions was individually assessed on routine sickness certificates in 999 consecutive sick leave episodes by four Norwegian National Insurance collaborators, two with and two without formal medical competence. The study took place in Northern Norway in 1997 and 1998. Agreement analysed with differences against mean, kappa, and proportional-agreement analysis within and between groups of assessors was used in the judgement. Agreements between the assessors and the self-assessment of sick-listed subjects were additionally analysed in 159 sick-leave episodes. RESULTS: Both sick-listed subjects and National Insurance collaborators anticipated a potential reduction in sick leave in 20–30% of cases, and in another 20% the potential was assessed as possible. The chance corrected agreements, however, were poor (k < 0.20) within and between groups of National Insurance collaborators. The agreement between National Insurance collaborators and the sick-listed subjects was no better than chance. Neither extended medical information nor formal medical competence increased agreement in cases where modified working conditions might have reduced sick leave. CONCLUSION: Information in medical sickness certificates proved ineffective in detecting cases where modified working conditions may reduce sick leave, and focusing on medical certificates may prevent identification of needed interventions. Strategies on how to communicate directly with sick-listed subjects would enable social authorities to exploit more of the sick leave reduction potential by modifying the working conditions than strategies on improving medical information
Entanglement entropy of black holes
The entanglement entropy is a fundamental quantity which characterizes the
correlations between sub-systems in a larger quantum-mechanical system. For two
sub-systems separated by a surface the entanglement entropy is proportional to
the area of the surface and depends on the UV cutoff which regulates the
short-distance correlations. The geometrical nature of the entanglement entropy
calculation is particularly intriguing when applied to black holes when the
entangling surface is the black hole horizon. I review a variety of aspects of
this calculation: the useful mathematical tools such as the geometry of spaces
with conical singularities and the heat kernel method, the UV divergences in
the entropy and their renormalization, the logarithmic terms in the
entanglement entropy in 4 and 6 dimensions and their relation to the conformal
anomalies. The focus in the review is on the systematic use of the conical
singularity method. The relations to other known approaches such as 't Hooft's
brick wall model and the Euclidean path integral in the optical metric are
discussed in detail. The puzzling behavior of the entanglement entropy due to
fields which non-minimally couple to gravity is emphasized. The holographic
description of the entanglement entropy of the black hole horizon is
illustrated on the two- and four-dimensional examples. Finally, I examine the
possibility to interpret the Bekenstein-Hawking entropy entirely as the
entanglement entropy.Comment: 89 pages; an invited review to be published in Living Reviews in
Relativit
Exploring the science–policy interface on climate change: The role of the IPCC in informing local decision-making in the UK
Building on the Intergovernmental Panel on Climate Change’s (IPCC) review of
how to make its Assessment Reports (ARs) more accessible in the future, the research
reported here assesses the extent to which the ARs are a useful tool through which scientific
advice informs local decision-making on climate change in the United Kingdom. Results from
interviews with local policy representatives and three workshops with UK academics, practitioners
and local decision makers are presented. Drawing on these data, we outline three
key recommendations made by participants on how the IPCC ARs can be better utilized as a
form of scientific advice to inform local decision-making on climate change. First, to provide
more succinct summaries of the reports paying close attention to the language, content,
clarity, context and length of these summaries; second, to better target and frame the reports
from a local perspective to maximize engagement with local stakeholders; and third, to work
with local decision makers to better understand how scientific advice on climate change is
being incorporated in local decision-making. By adopting these, the IPCC would facilitate local
decision-making on climate change and provide a systematic review of how its reports are
being used locally. We discuss implications of these recommendations and their relevance to
the wider debate within and outside the IPCC as to the most effective way the IPCC can more
effectively tailor its products to user needs without endangering the robustness of its scientific
findings. This article is published as part of a collection on scientific advice to government
- …