94 research outputs found
Chaos in the Gauge/Gravity Correspondence
We study the motion of a string in the background of the Schwarzschild black
hole in AdS_5 by applying the standard arsenal of dynamical systems. Our
description of the phase space includes: the power spectrum, the largest
Lyapunov exponent, Poincare sections and basins of attractions. We find
convincing evidence that the motion is chaotic. We discuss the implications of
some of the quantities associated with chaotic systems for aspects of the
gauge/gravity correspondence. In particular, we suggest some potential
relevance for the information loss paradox.Comment: 29 pages, 11 figure
Symmetry energy of dense matter in holographic QCD
We study the nuclear symmetry energy of dense matter using holographic QCD.
To this end, we consider two flavor branes with equal quark masses in a
D4/D6/D6 model. We find that at all densities the symmetry energy monotonically
increases. At small densities, it exhibits a power law behavior with the
density, .Comment: 9 pages, 3 figure
More three-point correlators of giant magnons with finite size
In the framework of the semiclassical approach, we compute the normalized
structure constants in three-point correlation functions, when two of the
vertex operators correspond to heavy string states, while the third vertex
corresponds to a light state. This is done for the case when the heavy string
states are finite-size giant magnons with one or two angular momenta, and for
two different choices of the light state, corresponding to dilaton operator and
primary scalar operator. The relevant operators in the dual gauge theory are
Tr(F_{\mu\nu}^2 Z^j+...) and Tr(Z^j). We first consider the case of AdS_5 x S^5
and N = 4 super Yang-Mills. Then we extend the obtained results to the
gamma-deformed AdS_5 x S^5_\gamma, dual to N = 1 super Yang-Mills theory,
arising as an exactly marginal deformation of N = 4 super Yang-Mills.Comment: 14 pages, no figure
Spiky Strings on I-brane
We study rigidly rotating strings in the near horizon geometry of the 1+1
dimensional intersection of two orthogonal stacks of NS5-branes, the so called
I-brane background. We solve the equations of motion of the fundamental string
action in the presence of two form NS-NS fluxes that the I-brane background
supports and write down general form of conserved quantities. We further find
out two limiting cases corresponding to giant magnon and single spike like
strings in various parameter space of solutions.Comment: 17 pages, major restructuring of text, added a referenc
Holographic c-theorems in arbitrary dimensions
We re-examine holographic versions of the c-theorem and entanglement entropy
in the context of higher curvature gravity and the AdS/CFT correspondence. We
select the gravity theories by tuning the gravitational couplings to eliminate
non-unitary operators in the boundary theory and demonstrate that all of these
theories obey a holographic c-theorem. In cases where the dual CFT is
even-dimensional, we show that the quantity that flows is the central charge
associated with the A-type trace anomaly. Here, unlike in conventional
holographic constructions with Einstein gravity, we are able to distinguish
this quantity from other central charges or the leading coefficient in the
entropy density of a thermal bath. In general, we are also able to identify
this quantity with the coefficient of a universal contribution to the
entanglement entropy in a particular construction. Our results suggest that
these coefficients appearing in entanglement entropy play the role of central
charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of
odd-dimensional field theories, which extends Cardy's proposal for even
dimensions. Beyond holography, we were able to show that for any
even-dimensional CFT, the universal coefficient appearing the entanglement
entropy which we calculate is precisely the A-type central charge.Comment: 62 pages, 4 figures, few typo's correcte
Thermodynamic instability of doubly spinning black objects
We investigate the thermodynamic stability of neutral black objects with (at
least) two angular momenta. We use the quasilocal formalism to compute the
grand canonical potential and show that the doubly spinning black ring is
thermodynamically unstable. We consider the thermodynamic instabilities of
ultra-spinning black objects and point out a subtle relation between the
microcanonical and grand canonical ensembles. We also find the location of the
black string/membrane phases of doubly spinning black objects.Comment: 25 pages, 7 figures v2: matches the published versio
Holographic renormalization and supersymmetry
Holographic renormalization is a systematic procedure for regulating
divergences in observables in asymptotically locally AdS spacetimes. For dual
boundary field theories which are supersymmetric it is natural to ask whether
this defines a supersymmetric renormalization scheme. Recent results in
localization have brought this question into sharp focus: rigid supersymmetry
on a curved boundary requires specific geometric structures, and general
arguments imply that BPS observables, such as the partition function, are
invariant under certain deformations of these structures. One can then ask if
the dual holographic observables are similarly invariant. We study this
question in minimal N = 2 gauged supergravity in four and five dimensions. In
four dimensions we show that holographic renormalization precisely reproduces
the expected field theory results. In five dimensions we find that no choice of
standard holographic counterterms is compatible with supersymmetry, which leads
us to introduce novel finite boundary terms. For a class of solutions
satisfying certain topological assumptions we provide some independent tests of
these new boundary terms, in particular showing that they reproduce the
expected VEVs of conserved charges.Comment: 70 pages; corrected typo
Corner contributions to holographic entanglement entropy
The entanglement entropy of three-dimensional conformal field theories
contains a universal contribution coming from corners in the entangling
surface. We study these contributions in a holographic framework and, in
particular, we consider the effects of higher curvature interactions in the
bulk gravity theory. We find that for all of our holographic models, the corner
contribution is only modified by an overall factor but the functional
dependence on the opening angle is not modified by the new gravitational
interactions. We also compare the dependence of the corner term on the new
gravitational couplings to that for a number of other physical quantities, and
we show that the ratio of the corner contribution over the central charge
appearing in the two-point function of the stress tensor is a universal
function for all of the holographic theories studied here. Comparing this
holographic result to the analogous functions for free CFT's, we find fairly
good agreement across the full range of the opening angle. However, there is a
precise match in the limit where the entangling surface becomes smooth, i.e.,
the angle approaches , and we conjecture the corresponding ratio is a
universal constant for all three-dimensional conformal field theories. In this
paper, we expand on the holographic calculations in our previous letter
arXiv:1505.04804, where this conjecture was first introduced.Comment: 62 pages, 6 figures, 1 table; v2: minor modifications to match
published version, typos fixe
Stationary Black Holes: Uniqueness and Beyond
The spectrum of known black-hole solutions to the stationary Einstein
equations has been steadily increasing, sometimes in unexpected ways. In
particular, it has turned out that not all black-hole-equilibrium
configurations are characterized by their mass, angular momentum and global
charges. Moreover, the high degree of symmetry displayed by vacuum and
electro-vacuum black-hole spacetimes ceases to exist in self-gravitating
non-linear field theories. This text aims to review some developments in the
subject and to discuss them in light of the uniqueness theorem for the
Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998.
Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's
authorship. Significantly restructured and updated all sections; changes are
too numerous to be usefully described here. The number of references
increased from 186 to 32
- …