129 research outputs found
Crude incidence in two-phase designs in the presence of competing risks.
BackgroundIn many studies, some information might not be available for the whole cohort, some covariates, or even the outcome, might be ascertained in selected subsamples. These studies are part of a broad category termed two-phase studies. Common examples include the nested case-control and the case-cohort designs. For two-phase studies, appropriate weighted survival estimates have been derived; however, no estimator of cumulative incidence accounting for competing events has been proposed. This is relevant in the presence of multiple types of events, where estimation of event type specific quantities are needed for evaluating outcome.MethodsWe develop a non parametric estimator of the cumulative incidence function of events accounting for possible competing events. It handles a general sampling design by weights derived from the sampling probabilities. The variance is derived from the influence function of the subdistribution hazard.ResultsThe proposed method shows good performance in simulations. It is applied to estimate the crude incidence of relapse in childhood acute lymphoblastic leukemia in groups defined by a genotype not available for everyone in a cohort of nearly 2000 patients, where death due to toxicity acted as a competing event. In a second example the aim was to estimate engagement in care of a cohort of HIV patients in resource limited setting, where for some patients the outcome itself was missing due to lost to follow-up. A sampling based approach was used to identify outcome in a subsample of lost patients and to obtain a valid estimate of connection to care.ConclusionsA valid estimator for cumulative incidence of events accounting for competing risks under a general sampling design from an infinite target population is derived
Dynamic Epitope Expression from Static Cytometry Data: Principles and Reproducibility
Background: An imprecise quantitative sense for the oscillating levels of proteins and their modifications, interactions, and translocations as a function of the cell cycle is fundamentally important for a cartoon/narrative understanding for how the cell cycle works. Mathematical modeling of the same cartoon/narrative models would be greatly enhanced by an openended methodology providing precise quantification of many proteins and their modifications, etc. Here we present methodology that fulfills these features. Methodology: Multiparametric flow cytometry was performed on Molt4 cells to measure cyclins A2 and B1, phospho-S10histone H3, DNA content, and light scatter (cell size). The resulting 5 dimensional data were analyzed as a series of bivariate plots to isolate the data as segments of an N-dimensional ‘‘worm’ ’ through the data space. Sequential, unidirectional regions of the data were used to assemble expression profiles for each parameter as a function of cell frequency. Results: Analysis of synthesized data in which the true values where known validated the approach. Triplicate experiments demonstrated exceptional reproducibility. Comparison of three triplicate experiments stained by two methods (single cyclin or dual cyclin measurements with common DNA and phospho-histone H3 measurements) supported the feasibility of combining an unlimited number of epitopes through this methodology. The sequential degradations of cyclin A2 followed by cyclin B1 followed by de-phosphorylation of histone H3 were precisely mapped. Finally, a two phase expression rat
Effective-Range Expansion of the Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential
The S-wave effective range parameters of the neutron-deuteron (nd) scattering
are derived in the Faddeev formalism, using a nonlocal Gaussian potential based
on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy
eigenphase shift is sufficiently attractive to reproduce predictions by the
AV18 plus Urbana three-nucleon force, yielding the observed value of the
doublet scattering length and the correct differential cross sections below the
deuteron breakup threshold. This conclusion is consistent with the previous
result for the triton binding energy, which is nearly reproduced by fss2
without reinforcing it with the three-nucleon force.Comment: 21 pages, 6 figures and 6 tables, submitted to Prog. Theor. Phy
Asymptotic complexities of discrete logarithm algorithms in pairing-relevant finite fields
International audienceWe study the discrete logarithm problem at the boundary case between small and medium characteristic finite fields, which is precisely the area where finite fields used in pairing-based cryptosystems live. In order to evaluate the security of pairing-based protocols, we thoroughly analyze the complexity of all the algorithms that coexist at this boundary case: the Quasi-Polynomial algorithms, the Number Field Sieve and its many variants, and the Function Field Sieve. We adapt the latter to the particular case where the extension degree is composite, and show how to lower the complexity by working in a shifted function field. All this study finally allows us to give precise values for the characteristic asymptotically achieving the highest security level for pairings. Surprisingly enough, there exist special characteristics that are as secure as general ones
Root Canal Anatomy of Maxillary and Mandibular Teeth
It is a common knowledge that a comprehensive understanding of the complexity of the internal anatomy of teeth is imperative to ensure successful root canal treatment. The significance of canal anatomy has been emphasized by studies demonstrating that variations in canal geometry before cleaning, shaping, and obturation procedures had a greater effect on the outcome than the techniques themselves. In recent years, significant technological advances for imaging teeth, such as CBCT and micro-CT, respectively, have been introduced. Their noninvasive nature allows to perform in vivo anatomical studies using large populations to address the influence of several variables such as ethnicity, aging, gender, and others, on the root canal anatomy, as well as to evaluate, quantitatively and/or qualitatively, specific and fine anatomical features of a tooth group. The purpose of this chapter is to summarize the morphological aspects of the root canal anatomy published in the literature of all groups of teeth and illustrate with three-dimensional images acquired from micro-CT technology.info:eu-repo/semantics/publishedVersio
Treatment options for small cell lung cancer – do we have more choice?
Small cell lung cancer (SCLC) is a significant health problem worldwide because of its high propensity for relapse. This review discusses existing and future therapies for the treatment of SCLC
Supernova neutrino burst detection with the Deep Underground Neutrino Experiment
The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the νe spectral parameters of the neutrino burst will be considered
- …