1,863 research outputs found

    Short term exendin-4 treatment reduces markers of metabolic disorders in female offspring of obese rat dams

    Full text link
    Β© 2015 Elsevier Ltd. Objectives: Maternal obesity imposes significant health risks in the offspring including diabetes and dyslipidemia. We previously showed that the hypoglycaemic agent exendin-4 (Ex-4) administered from weaning can reverse the maternal impact of 'transmitted disorders' in such offspring. However daily injection for six-weeks was required and the beneficial effect may lapse upon drug withdrawal. This study aimed to investigate whether short term Ex-4 treatment during suckling period in a rodent model can reverse transmitted metabolic disorders due to maternal obesity. Methods: Maternal obesity was induced in female Sprague Dawley rats by high-fat diet feeding for 6 weeks, throughout gestation and lactation. Female offspring were treated with Ex-4 (5. ΞΌg/kg/day) between postnatal day (P) 4 and 14. Female offspring were harvested at weaning (P20). Lipid and glucose metabolic markers were measured in the liver and fat. Appetite regulators were measured in the plasma and hypothalamus. Results: Maternal obesity significantly increased body weight, fat mass, and liver weight in the offspring. There was an associated inhibition of peroxisomal proliferator activated receptor gamma coactivator 1Ξ± (PGC1Ξ±), increased fatty acid synthase (FASN) expression in the liver, and reduced adipocyte triglyceride lipase (ATGL) expression. It also increased the plasma gut hormone ghrelin and reduced glucagon-like peptide-1. Ex-4 treatment partially reversed the maternal impact on adiposity and impaired lipid metabolism in the offspring, with increased liver PGC1Ξ± and inhibition of FASN mRNA expression. Ex-4 treatment also increased the expression of a novel fat depletion gene a2-zinc-glycoprotein 1 in the fat tissue. Conclusion: Short term Ex-4 treatment during the suckling period significantly improved the metabolic profile in the offspring from the obese mothers at weaning. Long-term studies are needed to follow such offspring to adulthood to examine the sustained effects of Ex-4 in preventing the development of metabolic disease

    Study on Growth Kinetics of CdSe Nanocrystals with a New Model

    Get PDF
    A model which involves both bulk diffusion process and surface reaction process has been developed for describing the growth behaviour of nanoparticles. When the model is employed, hypothesising that either of the processes alone dominates the overall growth process is unnecessary. Conversely, the relative magnitude of contributions from both processes could be obtained from the model. Using this model in our system, the growth process of CdSe QDs demonstrated two different growth stages. During the first stage, the growth of CdSe QDs was dominated by bulk diffusion, whereas, neither the bulk diffusion process nor the surface reaction process could be neglected during the later stage. At last, we successfully modelled the Ostwald ripening of CdSe QDs with LSW theories

    Double quantum dot with integrated charge sensor based on Ge/Si heterostructure nanowires

    Get PDF
    Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitation: the predominance of spin-zero nuclei suppresses the hyperfine interaction and chemical synthesis creates a clean and defect-free system with highly controllable properties. Here we present a top gate-defined double quantum dot based on Ge/Si heterostructure nanowires with fully tunable coupling between the dots and to the leads. We also demonstrate a novel approach to charge sensing in a one-dimensional nanostructure by capacitively coupling the double dot to a single dot on an adjacent nanowire. The double quantum dot and integrated charge sensor serve as an essential building block required to form a solid-state spin qubit free of nuclear spin.Comment: Related work at http://marcuslab.harvard.edu and http://cmliris.harvard.ed

    State Effects of Two Forms of Meditation on Prefrontal EEG Asymmetry in Previously Depressed Individuals

    Get PDF
    We investigated state effects of two forms of meditation on electroencephalography prefrontal Ξ±-asymmetry, a global indicator of approach versus withdrawal motivation and related affective state. A clinical series of previously depressed individuals were guided to practice either mindfulness breathing meditation (N = 8) or a form of meditation directly aimed at cultivating positive affect, loving kindness or metta meditation (N = 7). Prefrontal asymmetry was assessed directly before and after the 15-min meditation period. Results showed changes in asymmetry towards stronger relative left prefrontal activation, i.e., stronger approach tendencies, regardless of condition. Further explorations of these findings suggested that responses were moderated by participants’ tendencies to engage in ruminative brooding. Individuals high in brooding tended to respond to breathing meditation but not loving kindness meditation, while those low in brooding showed the opposite pattern. Comparisons with an additionally recruited β€œrest” group provided evidence suggesting that changes seen were not simply attributable to habituation. The results indicate that both forms of meditation practice can have beneficial state effects on prefrontal Ξ±-asymmetry and point towards differential indications for offering them in the treatment of previously depressed patients

    Exploring the impacts of anthropogenic emission sectors on PM2.5 and human health in South and East Asia

    Get PDF
    To improve poor air quality in Asia and inform effective emission-reduction strategies, it is vital to understand the contributions of different pollution sources and their associated human health burdens. In this study, we use the WRF-Chem regional atmospheric model to explore the air quality and human health benefits of eliminating emissions from six different anthropogenic sectors (transport, industry, shipping, electricity generation, residential combustion, and open biomass burning) over South and East Asia in 2014. We evaluate WRF-Chem against measurements from air quality monitoring stations across the region and find the model captures the spatial distribution and magnitude of PM2.5 (particulate matter with an aerodynamic diameter of no greater than 2.5 ¡m). We find that eliminating emissions from residential energy use, industry, or open biomass burning yields the largest reductions in population-weighted PM2.5 concentrations across the region. The largest human health benefit is achieved by eliminating either residential or industrial emissions, averting 467 000 (95 % uncertainty interval (95UI): 409 000–542 000) or 283 000 (95UI: 226 000–358 000) annual premature mortalities, respectively, in India, China, and South-east Asia, with fire prevention averting 28 000 (95UI: 24 000–32 000) annual premature mortalities across the region. We compare our results to previous sector-specific emission studies. Across these studies, residential emissions are the dominant cause of particulate pollution in India, with a multi-model mean contribution of 42 % to population-weighted annual mean PM2.5. Residential and industrial emissions cause the dominant contributions in China, with multi-model mean contributions of 29 % for both sectors to population-weighted annual mean PM2.5. Future work should focus on identifying the most effective options within the residential, industrial, and open biomass-burning emission sectors to improve air quality across South and East Asia

    Synthesis of Monodisperse Nanocrystals via Microreaction: Open-to-Air Synthesis with Oleylamine as a Coligand

    Get PDF
    Microreaction provides a controllable tool to synthesize CdSe nanocrystals (NCs) in an accelerated fashion. However, the surface traps created during the fast growth usually result in low photoluminescence (PL) efficiency for the formed products. Herein, the reproducible synthesis of highly luminescent CdSe NCs directly in open air was reported, with a microreactor as the controllable reaction tool. Spectra investigation elucidated that applying OLA both in Se and Cd stock solutions could advantageously promote the diffusion between the two precursors, resulting in narrow full-width-at-half maximum (FWHM) of PL (26 nm). Meanwhile, the addition of OLA in the source solution was demonstrated helpful to improve the reactivity of Cd monomer. In this case, the focus of size distribution was accomplished during the early reaction stage. Furthermore, if the volume percentage (vol.%) of OLA in the precursors exceeded a threshold of 37.5%, the resulted CdSe NCs demonstrated long-term fixing of size distribution up to 300 s. The observed phenomena facilitated the preparation of a size series of monodisperse CdSe NCs merely by the variation of residence time. With the volume percentage of OLA as 37.5% in the source solution, a 78 nm tuning of PL spectra (from 507 to 585) was obtained through the variation of residence time from 2 s to 160 s, while maintaining narrow FMWH of PL (26–31 nm) and high QY of PL (35–55%)

    Non-invasive detection of ischemic vascular damage in a pig model of liver donation after circulatory death

    Get PDF
    Background and Aims: Liver graft quality is evaluated by visual inspection prior to transplantation, a process highly dependent on the surgeon's experience. We present an objective, noninvasive, quantitative way of assessing liver quality in real time using Raman spectroscopy, a laser-based tool for analyzing biomolecular composition. Approach and Results: A porcine model of donation after circulatory death (DCD) with normothermic regional perfusion (NRP) allowed assessment of liver quality premortem, during warm ischemia (WI) and post-NRP. Ten percent of circulating blood volume was removed in half of experiments to simulate blood recovery for DCD heart removal. Left median lobe biopsies were obtained before circulatory arrest, after 45Β minutes of WI, and after 2Β hours of NRP and analyzed using spontaneous Raman spectroscopy, stimulated Raman spectroscopy (SRS), and staining. Measurements were also taken in situ from the porcine liver using a handheld Raman spectrometer at these time points from left median and right lateral lobes. Raman microspectroscopy detected congestion during WI by measurement of the intrinsic Raman signal of hemoglobin in red blood cells (RBCs), eliminating the need for exogenous labels. Critically, this microvascular damage was not observed during WI when 10% of circulating blood was removed before cardiac arrest. Two hours of NRP effectively cleared RBCs from congested livers. Intact RBCs were visualized rapidly at high resolution using SRS. Optical properties of ischemic livers were significantly different from preischemic and post-NRP livers as measured using a handheld Raman spectrometer. Conclusions: Raman spectroscopy is an effective tool for detecting microvascular damage which could assist the decision to use marginal livers for transplantation. Reducing the volume of circulating blood before circulatory arrest in DCD may help reduce microvascular damage

    ruvA Mutants that resolve Holliday junctions but do not reverse replication forks

    Get PDF
    RuvAB and RuvABC complexes catalyze branch migration and resolution of Holliday junctions (HJs) respectively. In addition to their action in the last steps of homologous recombination, they process HJs made by replication fork reversal, a reaction which occurs at inactivated replication forks by the annealing of blocked leading and lagging strand ends. RuvAB was recently proposed to bind replication forks and directly catalyze their conversion into HJs. We report here the isolation and characterization of two separation-of-function ruvA mutants that resolve HJs, based on their capacity to promote conjugational recombination and recombinational repair of UV and mitomycin C lesions, but have lost the capacity to reverse forks. In vivo and in vitro evidence indicate that the ruvA mutations affect DNA binding and the stimulation of RuvB helicase activity. This work shows that RuvA's actions at forks and at HJs can be genetically separated, and that RuvA mutants compromised for fork reversal remain fully capable of homologous recombination

    B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

    Get PDF
    We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the ΞΌMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous ΞΌMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. Β© 2013 Kozakiewicz et al

    Further evidence for a parent-of-origin effect at the NOP9 locus on language-related phenotypes

    Get PDF
    Background - Specific language impairment (SLI) is a common neurodevelopmental disorder, observed in 5–10 % of children. Family and twin studies suggest a strong genetic component, but relatively few candidate genes have been reported to date. A recent genome-wide association study (GWAS) described the first statistically significant association specifically for a SLI cohort between a missense variant (rs4280164) in the NOP9 gene and language-related phenotypes under a parent-of-origin model. Replications of these findings are particularly challenging because the availability of parental DNA is required. Methods - We used two independent family-based cohorts characterised with reading- and language-related traits: a longitudinal cohort (n = 106 informative families) including children with language and reading difficulties and a nuclear family cohort (n = 264 families) selected for dyslexia. Results - We observed association with language-related measures when modelling for parent-of-origin effects at the NOP9 locus in both cohorts: minimum P = 0.001 for phonological awareness with a paternal effect in the first cohort and minimum P = 0.0004 for irregular word reading with a maternal effect in the second cohort. Allelic and parental trends were not consistent when compared to the original study. Conclusions - A parent-of-origin effect at this locus was detected in both cohorts, albeit with different trends. These findings contribute in interpreting the original GWAS report and support further investigations of the NOP9 locus and its role in language-related traits. A systematic evaluation of parent-of-origin effects in genetic association studies has the potential to reveal novel mechanisms underlying complex traits
    • …
    corecore