186 research outputs found

    Antarctic killer whales make rapid, round-trip movements to subtropical waters: evidence for physiological maintenance migrations?

    Get PDF
    Killer whales (Orcinus orca) are important predators in high latitudes, where their ecological impact is mediated through their movements. We used satellite telemetry to provide the first evidence of migration for killer whales, characterized by fast (more than 12 km h−1, 6.5 knots) and direct movements away from Antarctic waters by six of 12 type B killer whales tagged when foraging near the Antarctic Peninsula, including all tags transmitting for more than three weeks. Tags on five of these whales revealed consistent movements to subtropical waters (30–37° S) off Uruguay and Brazil, in surface water temperatures ranging from −1.9°C to 24.2°C; one 109 day track documented a non-stop round trip of almost 9400 km (5075 nmi) in just 42 days. Although whales travelled slower in the warmest waters, there was no obvious interruption in swim speed or direction to indicate calving or prolonged feeding. Furthermore, these movements were aseasonal, initiating over 80 days between February and April; one whale returned to within 40 km of the tagging site at the onset of the austral winter in June. We suggest that these movements may represent periodic maintenance migrations, with warmer waters allowing skin regeneration without the high cost of heat loss: a physiological constraint that may also affect other whales

    Extensive core microbiome in drone-captured whale blow supports a framework for health monitoring

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mSystems 2 (2017): e00119-17, doi:10.1128/mSystems.00119-17.The pulmonary system is a common site for bacterial infections in cetaceans, but very little is known about their respiratory microbiome. We used a small, unmanned hexacopter to collect exhaled breath condensate (blow) from two geographically distinct populations of apparently healthy humpback whales (Megaptera novaeangliae), sampled in the Massachusetts coastal waters off Cape Cod (n = 17) and coastal waters around Vancouver Island (n = 9). Bacterial and archaeal small-subunit rRNA genes were amplified and sequenced from blow samples, including many of sparse volume, as well as seawater and other controls, to characterize the associated microbial community. The blow microbiomes were distinct from the seawater microbiomes and included 25 phylogenetically diverse bacteria common to all sampled whales. This core assemblage comprised on average 36% of the microbiome, making it one of the more consistent animal microbiomes studied to date. The closest phylogenetic relatives of 20 of these core microbes were previously detected in marine mammals, suggesting that this core microbiome assemblage is specialized for marine mammals and may indicate a healthy, noninfected pulmonary system. Pathogen screening was conducted on the microbiomes at the genus level, which showed that all blow and few seawater microbiomes contained relatives of bacterial pathogens; no known cetacean respiratory pathogens were detected in the blow. Overall, the discovery of a shared large core microbiome in humpback whales is an important advancement for health and disease monitoring of this species and of other large whales.Funding for sample analysis was provided through a grant to A.A., M.J.M., and J.W.D. from the Ocean Life Institute of the Woods Hole Oceanographic Institution. Attachments for collection surfaces on the hexacopter were constructed with funding support from NOAA’s UAS Program

    Photogrammetry of blue whales with an unmanned hexacopter

    Get PDF
    Author Posting. © Society for Marine Mammalogy, 2016. This article is posted here by permission of Society for Marine Mammalogy for personal use, not for redistribution. The definitive version was published in Marine Mammal Science 32 (2016):1510–1515, doi:10.1111/mms.12328.Baleen whales are the largest animals ever to live on earth, and many populations were hunted close to extinction in the 20th century (Clapham et al. 1999). Their recovery is now a key international conservation goal, and they are important in marine ecosystems as massive consumers that can promote primary production through nutrient cycling (Roman et al. 2014). However, although abundance has been assessed to monitor the recovery of some large whale populations (e.g., Barlow et al. 2011, Laake et al. 2012) many populations are wide-ranging and pelagic, and this inaccessibility has generally impeded quantitative assessments of recovery (Peel et al. 2015). To augment traditional abundance monitoring, we suggest that photogrammetric measures of individual growth and body condition can also inform about population status, enabling assessment of individual health as well as population numbers. Photogrammetry from manned aircraft has used photographs taken from directly above whales to estimate individual lengths (Gilpatrick and Perryman 2008) and monitor growth trends (Fearnbach et al. 2011), and shape profiles can be measured to assess body condition to infer reproductive and nutritional status (e.g., Perryman and Lynn 2002, Miller et al. 2012). Recently, Durban et al. (2015) demonstrated the utility of an unmanned hexacopter for collecting aerial photogrammetry images of killer whales (Orcinus orca); this provided a noninvasive, cost-effective, and safe platform that could be deployed from a boat to obtain vertical images of whales. Here we describe the use of this small, unmanned aerial system (UAS) to measure length and condition of blue whales (Balaenoptera musculus), the largest of all whales.María Francisca Cortés Solari; Rafaela Landea Briones; MERI Foundation; Woods Hole Oceanographic Institution Acces

    Body size data collected non-invasively from drone images indicate a morphologically distinct Chilean blue whale (Blaenoptera musculus) taxon

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Leslie, M. S., Perkins-Taylor, C. M., Durban, J. W., Moore, M. J., Miller, C. A., Chanarat, P., Bahamonde, P., Chiang, G., & Apprill, A. Body size data collected non-invasively from drone images indicate a morphologically distinct Chilean blue whale (Blaenoptera musculus) taxon. Endangered Species Research, 43, (2020): 291-304, https://doi.org/10.3354/esr01066.The blue whale Balaenoptera musculus (Linnaeus, 1758) was the target of intense commercial whaling in the 20th century, and current populations remain drastically below pre-whaling abundances. Reducing uncertainty in subspecific taxonomy would enable targeted conservation strategies for the recovery of unique intraspecific diversity. Currently, there are 2 named blue whale subspecies in the temperate to polar Southern Hemisphere: the Antarctic blue whale B. m. intermedia and the pygmy blue whale B. m. brevicauda. These subspecies have distinct morphologies, genetics, and acoustics. In 2019, the Society for Marine Mammalogy’s Committee on Taxonomy agreed that evidence supports a third (and presently unnamed) subspecies of Southern Hemisphere blue whale subspecies, the Chilean blue whale. Whaling data indicate that the Chilean blue whale is intermediate in body length between pygmy and Antarctic blue whales. We collected body size data from blue whales in the Gulfo Corcovado, Chile, during the austral summers of 2015 and 2017 using aerial photogrammetry from a remotely controlled drone to test the hypothesis that the Chilean blue whale is morphologically distinct from other Southern Hemisphere blue whale subspecies. We found the Chilean whale to be morphologically intermediate in both overall body length and relative tail length, thereby joining other diverse data in supporting the Chilean blue whale as a unique subspecific taxon. Additional photogrammetry studies of Antarctic, pygmy, and Chilean blue whales will help examine unique morphological variation within this species of conservation concern. To our knowledge, this is the first non-invasive small drone study to test a hypothesis for systematic biology.We are thankful to Foundation MERI (Melimoyu Ecosystem Research Institute) for logistical and funding support. Cruise support in 2017 was provided by the Dalio Foundation (now ‘OceanX’)

    Larger females have more calves: influence of maternal body length on fecundity in North Atlantic right whales

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stewart, J., Durban, J., Europe, H., Fearnbach, H., Hamilton, P., Knowlton, A., Lynn, M., Miller, C., Perryman, W., Tao, B., & Moore, M. Larger females have more calves: influence of maternal body length on fecundity in North Atlantic right whales. Marine Ecology Progress Series, 689, (2022): 179–189, https://doi.org/10.3354/meps14040.North Atlantic right whales (NARW) are critically endangered and have been declining in abundance since 2011. In the past decade, human-caused mortalities from vessel strikes and entanglements have been increasing, while birth rates in the population are at a 40 yr low. In addition to declining abundance, recent studies have shown that NARW length-at-age is decreasing due to the energetic impacts of sub-lethal entanglements, and that the body condition of the population is poorer than closely related southern right whales. We examined whether shorter body lengths are associated with reduced fecundity in female NARW. We compared age-corrected, modeled metrics of body length with 3 metrics of fecundity: age at first reproduction, average inter-birth interval, and the number of calves produced per potential reproductive year. We found that body length is significantly related to birth interval and calves produced per reproductive year, but not age at first reproduction. Larger whales had shorter inter-birth intervals and produced more calves per potential reproductive year. Larger whales also had higher lifetime calf production, but this was a result of larger whales having longer potential reproductive spans, as body lengths have generally been declining over the past 40 yr. Declining body sizes are a potential contributor to low birth rates over the past decade. Efforts to reduce entanglements and vessel strikes could help maintain population viability by increasing fecundity and improving resiliency of the population to other anthropogenic and climate impacts.Funding to the New England Aquarium for curation of the photo-identification catalog is provided by NOAA Contract 1305M2- 18-P-NFFM-0108

    Runs of homozygosity in killer whale genomes provide a global record of demographic histories

    Get PDF
    Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically, the probability of inbreeding mediated by mating system and/or population demography. Here, we investigated whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global data set of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstructed demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We found a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (\u3c1 \u3eMb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (\u3e1.5 Mb) were found in low latitude populations, and populations of known conservation concern. These include a Scottish killer whale, for which 37.8% of the autosomes were comprised of ROH \u3e1.5 Mb in length. The fate of this population, in which only two adult males have been sighted in the past five years, and zero fecundity over the last two decades, may be inextricably linked to its demographic history and consequential inbreeding depression

    Using individual-based bioenergetic models to predict the aggregate effects of disturbance on populations : a case study with beaked whales and Navy sonar

    Get PDF
    Funding: This research was supported by the Office of Naval Research (https://www.onr.navy.mil/) grant N0001419WX00431 and N000142012045: “Integrating information on displacement caused by mid-frequency active sonar and measurements of prey field into a population consequences of disturbance model for beaked whales” awarded to Dave Moretti, ND, SW, JH, LT, KB-B, AdR & VH. Funding support for tagging was provided by the US Navy's Office of Naval Research and Living Marine Resources program, the Chief of Naval Operations' Energy and Environmental Readiness Division and the NOAA Fisheries Ocean Acoustics Program.Anthropogenic activities can lead to changes in animal behavior. Predicting population consequences of these behavioral changes requires integrating short-term individual responses into models that forecast population dynamics across multiple generations. This is especially challenging for long-lived animals, because of the different time scales involved. Beaked whales are a group of deep-diving odontocete whales that respond behaviorally when exposed to military mid-frequency active sonar (MFAS), but the effect of these nonlethal responses on beaked whale populations is unknown. Population consequences of aggregate exposure to MFAS was assessed for two beaked whale populations that are regularly present on U.S. Navy training ranges where MFAS is frequently used. Our approach integrates a wide range of data sources, including telemetry data, information on spatial variation in habitat quality, passive acoustic data on the temporal pattern of sonar use and its relationship to beaked whale foraging activity, into an individual-based model with a dynamic bioenergetic module that governs individual life history. The predicted effect of disturbance from MFAS on population abundance ranged between population extinction to a slight increase in population abundance. These effects were driven by the interaction between the temporal pattern of MFAS use, baseline movement patterns, the spatial distribution of prey, the nature of beaked whale behavioral response to MFAS and the top-down impact of whale foraging on prey abundance. Based on these findings, we provide recommendations for monitoring of marine mammal populations and highlight key uncertainties to help guide future directions for assessing population impacts of nonlethal disturbance for these and other long-lived animals.Publisher PDFPeer reviewe

    Population comparison of right whale body condition reveals poor state of the North Atlantic right whale

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Christiansen, F., Dawson, S. M., Durban, J. W., Fearnbach, H., Miller, C. A., Bejder, L., Uhart, M., Sironi, M., Corkeron, P., Rayment, W., Leunissen, E., Haria, E., Ward, R., Warick, H. A., Kerr, I., Lynn, M. S., Pettis, H. M., & Moore, M. J. Population comparison of right whale body condition reveals poor state of the North Atlantic right whale. Marine Ecology Progress Series, 640, (2020): 1-16, doi:10.3354/meps13299.The North Atlantic right whale Eubalaena glacialis (NARW), currently numbering <410 individuals, is on a trajectory to extinction. Although direct mortality from ship strikes and fishing gear entanglements remain the major threats to the population, reproductive failure, resulting from poor body condition and sublethal chronic entanglement stress, is believed to play a crucial role in the population decline. Using photogrammetry from unmanned aerial vehicles, we conducted the largest population assessment of right whale body condition to date, to determine if the condition of NARWs was poorer than 3 seemingly healthy (i.e. growing) populations of southern right whales E. australis (SRWs) in Argentina, Australia and New Zealand. We found that NARW juveniles, adults and lactating females all had lower body condition scores compared to the SRW populations. While some of the difference could be the result of genetic isolation and adaptations to local environmental conditions, the magnitude suggests that NARWs are in poor condition, which could be suppressing their growth, survival, age of sexual maturation and calving rates. NARW calves were found to be in good condition. Their body length, however, was strongly determined by the body condition of their mothers, suggesting that the poor condition of lactating NARW females may cause a reduction in calf growth rates. This could potentially lead to a reduction in calf survival or an increase in female calving intervals. Hence, the poor body condition of individuals within the NARW population is of major concern for its future viability.North Atlantic: NOAA NA14OAR4320158; Australia: US Office of Naval Research Marine Mammals Program (Award No. N00014-17-1-3018), the World Wildlife Fund for Nature Australia and a Murdoch University School of Veterinary and Life Sciences Small Grant Award; New Zealand: New Zealand Antarctic Research institute (NZARI 2016-1-4), Otago University and NZ Whale and Dolphin Trust; Argentina: National Geographic Society (Grant number: NGS-379R-18)

    Tissue Localization and Extracellular Matrix Degradation by PI, PII and PIII Snake Venom Metalloproteinases: Clues on the Mechanisms of Venom-Induced Hemorrhage

    Get PDF
    20 páginas, 4 figuras, 3 tablas y 7 tablas en material suplementario.Snake venom hemorrhagic metalloproteinases (SVMPs) of the PI, PII and PIII classes were compared in terms of tissue localization and their ability to hydrolyze basement membrane components in vivo, as well as by a proteomics analysis of exudates collected in tissue injected with these enzymes. Immunohistochemical analyses of co-localization of these SVMPs with type IV collagen revealed that PII and PIII enzymes co-localized with type IV collagen in capillaries, arterioles and post-capillary venules to a higher extent than PI SVMP, which showed a more widespread distribution in the tissue. The patterns of hydrolysis by these three SVMPs of laminin, type VI collagen and nidogen in vivo greatly differ, whereas the three enzymes showed a similar pattern of degradation of type IV collagen, supporting the concept that hydrolysis of this component is critical for the destabilization of microvessel structure leading to hemorrhage. Proteomic analysis of wound exudate revealed similarities and differences between the action of the three SVMPs. Higher extent of proteolysis was observed for the PI enzyme regarding several extracellular matrix components and fibrinogen, whereas exudates from mice injected with PII and PIII SVMPs had higher amounts of some intracellular proteins. Our results provide novel clues for understanding the mechanisms by which SVMPs induce damage to the microvasculature and generate hemorrhage.This work was performed in partial fulfillment of the requirements for the PhD degree for Cristina Herrera at Universidad de Costa Rica.Peer reviewe
    corecore